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1. INTRODUCTION 

Malicious mobile code, which can take many different 

forms and include viruses, worms, trojan horses, and logic 

bombs, is referred to as a computer virus [1]. Different 

strategies are used by each kind of code to spread around the 

internet. Whereas worms employ system flaws to find and 

attack computers, viruses mostly target file systems. Trojan 

horses pose as trustworthy websites to trick people into 

downloading them unintentionally. Despite the fact that there 

are many different types of computer viruses, they all have traits 

including invisibility, latency, destructibility, unpredictability, 

and infectivity [2]. The word "latent" refers to the fact that 

viruses hide within a computer and propagate across the internet 

without the user's knowledge. Without authentication, anyone 

can transmit any kind of packet to any other person on the 

internet, requiring the recipient to process any packet that 

reaches a certain service. 

 

Because there is no verification, attackers can fabricate 

identities and send malicious programs without repercussions. 

As a result, every system having an internet connection makes 

itself vulnerable to cyberattacks. 

The susceptible-infectious-removed (SIR) classical epidemic 

models developed by Kermack and McKendrick [7] provide a 

means of investigating the basic ideas of mathematical models 

pertaining to the spread of illnesses and/or dangerous software. 

Numerous mathematical models that depict both the attacking 

behavior and the spread of malware across networks have been 

developed, building on this conventional epidemic framework 

[8–9]. The Internet was found to exhibit a range of power-law 

degree distributions ten years ago [10–14]. The unexpected 

conclusion that the epidemic threshold vanishes for scale-free 

networks of indefinite size was the result of this discovery, 

which stimulated interest in the propagation of viruses within 

complex networks [15].  

 

But previous studies mainly concentrated on three fundamental 

epidemic models: the SI model [16, 17], the SIS model [18–21], 

and the SIR model [22–24]. When endemic equilibrium was 

present, studies of its global stability were mostly experimental. 
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There hasn't been a lot of research on more logical epidemic 

models, despite Pastor-Satorras and Vespignani's [13] emphasis 

on their significance. The threshold parameter and the idea of 

computer viruses spreading via email were first presented by 

Newman et al. [25], which paved the way for the simulation of 

viral propagation intended to stop malware infestations [26]. 

More recently, studies have attempted to improve the way that 

virus propagation models and anti-virus strategies are 

integrated to investigate problems including virus 

immunization, quarantine tactics, and the intrinsic fuzziness of 

these models. 

 

To prevent any potential threat of damaging attack, anti-

malware tools are installed on the system that can detect and 

eliminate malware. Viral infections and other dangerous objects 

can be recognized by anti-malware software by using a set of 

malware signature definitions. It searches through the 

computer's memory and discs for files, matching them to a 

database of malware signatures. Thus, the only malwares that 

are protected against on a machine are those that were known 

before the last malware definition update. As a result, the 

efficacy of anti-malware software is significantly impacted by 

how frequently these virus definitions are updated.  Maintaining 

an up-to-date malware signature database is essential for 

maximizing the efficacy of anti-malware software against new 

threats. Pandemic is gaining a comprehensive grasp of its mode 

of transmission in order to design effective containment 

strategies. To lessen network vulnerabilities and ensure 

security, similar defenses are employed against computer 

viruses, such as intrusion detection systems [31], anti-virus 

software [27–29], and antidotal computers [30]. 

 

2. NOISE FORMULATION FOR COMPUTER 

VIRUS SUSCEPTIBLE-INFECTED MODEL: 

Antivirus software is widely recognized for its ability 

to successfully recover compromised systems. The number of 

computers it can repair in a predetermined amount of time can 

be used to gauge its effectiveness. Generally speaking, this 

software's price and performance are related. The level of a 

network's anti-virus efficacy is limited by financial constraints. 

As a result, it makes sense to think about the recovery function 

listed below: 

 

𝑇(𝐼) = {
𝜀𝐼        𝑖𝑓 0 ≤ 𝐼 ≤ 𝐼𝑂

𝑚               𝑖𝑓  𝐼 ≤ 𝐼𝑂
 

where ε is the recovery rate when the anti-virus ability is not 

fully utilized. The mathematical model is given by two 

equations where one gives idea about the susceptible computers 

(S) over a period of time and the other gives us idea about the 

infected computers (I) over a period of time denoted by 𝑆′(𝑡) 

and 𝐼′(𝑡) respectively. The dynamics of the model is given by 

non-linear differential equation with noise as follows: 

{
𝑆′(𝑡) = 𝑟𝑠 (1 −

𝑆

𝑘
) − 𝜆𝑆𝐼 − 𝑑𝑆 + η1Ψ1(t)

𝐼′(𝑡) = 𝜆𝑆𝐼 − 𝑇(𝐼) − 𝑑𝐼 + η2Ψ2(t)            
                               (1)                                                               

In system of equations (1), 𝑆 represents the total number of 

susceptible computers, 𝐼 represents the total number of infected 

computers, λ represents the rate at which a connection to an 

infected computer facilitates recovery. 𝑑 represents the rate at 

which one computer is removed from network, 𝑘 is the carrying 

capacity which is >0, 𝑟 is the intrinsic growth rate >0, η1Ψ1(t) 

& η2Ψ2(t) are noise disturbances. 

 

3. ANALYSIS OF WHITE NOISE FOR S-I 

MODEL 

We will now explore stochastic models to illustrate 

how random environmental variables impact stability. Due to 

random fluctuations, the model's parameters vary around their 

average values. We will consider the effects of additive white 

noise and the inherent randomness of the model. White noise 

perturbations will affect any parameter in the model, 

represented as , ηiΨi(t), where Ψi(t) signifies Gaussian white 

noise at a specific time t, and , 𝜂𝑖  represents the noise 

amplitude. Despite this, the equilibrium states of both 

deterministic and stochastic models will remain the same, 

though they will now fluctuate around their mean states. 

We analyse model dynamics (1) around the interior equilibrium 

point P̃ (𝑆∗, 𝐼∗).Let 

S(t)=ℎ1(𝑡) + 𝑆∗;                                                      (3.1) 

I(t)=ℎ2(𝑡) + 𝐼∗                                                          (3.2)            

𝑆′(𝑡) = ℎ1
′ (𝑡) ;  𝐼′(𝑡) = ℎ2

′ (𝑡)                                                  

Case (i):  

{
𝑆′(𝑡) = 𝑟𝑠 (1 −

𝑆

𝑘
) − 𝜆𝑆𝐼 − 𝑑𝑆 + η1Ψ1(t)

𝐼′(𝑡) = 𝜆𝑆𝐼 − 𝜀𝐼 − 𝑑𝐼 + η2Ψ2(t)                 
                            (3.3)                                                                                     

Case (ii): 

{
𝑆′(𝑡) = 𝑟𝑠 (1 −

𝑆

𝑘
) − 𝜆𝑆𝐼 − 𝑑𝑆 + η1Ψ1(t)

𝐼′(𝑡) = 𝜆𝑆𝐼 − 𝑚 − 𝑑𝐼 + η2Ψ2(t)                 
                           (3.4)                                                                                  
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By concentrating just on the consequences of stochastic linear 

perturbations. Using (3.1) and (3.2), 

ℎ1
′ (𝑡) = 𝑟(ℎ1(𝑡) + 𝑆∗) (1 −

(ℎ1(𝑡)+𝑆∗)

𝑘
) −                 𝜆(ℎ1(𝑡) +

𝑆∗)(ℎ2(𝑡) + 𝐼∗) − 𝑑(ℎ1(𝑡) + 𝑆∗) + η1Ψ1(t)                      (3.5) 

𝐼′(𝑡) = 𝜆(ℎ1(𝑡) + 𝑆∗)(ℎ2(𝑡) + 𝐼∗) − 𝜀(ℎ2(𝑡) + 𝐼∗) −

𝑑(ℎ2(𝑡) + 𝐼∗) + η2Ψ2(t)                                                         (3.6) 

Model (1) is therefore condensed to the simple linear 

arrangement illustrated below.               

ℎ1
′ (𝑡) = −

2𝑟

𝑘
ℎ1(𝑡)𝑆∗ − 𝜆ℎ2(𝑡)𝑆∗ +

                                                         η1Ψ1(t)                                (3.7)                                                      

ℎ2
′ (𝑡) = 𝜆ℎ1(𝑡)𝐼∗ + η2Ψ2(t)                                         (3.8) 

Taking Fourier transform for (3.6)-(3.7) we get, 

𝜂1𝛹1̃(𝜔) = (𝑖𝜔)ℎ1̃(𝜔) +
2𝑟

𝑘
ℎ1̃(𝜔)𝑆∗ + 𝜆ℎ2̃(𝜔)𝑆∗             (3.9)                             

𝜂2𝛹2̃(𝜔) = (𝑖𝜔)ℎ2̃(𝜔) −               𝑧𝑧𝑧𝜆ℎ1
̃ (𝜔)𝐼∗                 (3.10)                                                                  

The matrix form of the equations (3.8) and (3.9) as  

P(𝜔)ℎ̃(𝜔) = Ψ̃(𝜔)                                                               (3.11) 

where P (𝜔) =[
𝑎 𝑏
𝑐 𝑑

] 

| P (𝜔) |=ad-cb 

h̃(ω) = [h1̃(ω) , h2̃(ω) ]T; 

Ψ̃(ω)= [η1Ψ1(t), η2Ψ2(t)]T; 

 a=iω +
2r

k
 S∗;  b=λS∗;  c=- λI∗;    d= iω; 

P (𝜔) =[
iω +

2r

k
 S∗ λS∗

− λI∗ iω
] 

| P (𝜔) |=-ω2 +
2r

k
 S∗(iω) + λ2S∗I∗ 

adj[P(𝜔)]= [
iω −λS∗

 λI∗ iω +
2r

k
 S∗] 

As an alternative, equation (3.10) can be expressed as 

ℎ̃(𝜔) = [ P (𝜔)]−1Ψ̃(𝜔)                                        (3.12) 

[ P (𝜔)]−1 = Q(𝜔)                                                 (3.13)  

Where  Q(𝜔) =
adj[ P(𝜔]

|P(𝜔)|
                                                        (3.14) 

Q=
1

−ω2+
2r

k
 S∗(iω)+λ2S∗I∗

[
iω −λS∗

 λI∗ iω +
2r

k
 S∗] 

𝑎11 = iω; 𝑎12 = −λS∗; 𝑏11 = λI∗; 𝑏12 =  iω +
2r

k
 S∗  

The variations in the intensity of the variable, denoted as hi 

where i ranges from 1 to 2, are provided. 

𝜎ℎ𝑖

   2 =
1

2𝜋
∑ ∫ ∝𝑖 |Q𝑖𝑗(𝜔)|

2∞

−∞
2
𝑖=1 𝑑𝜔; i=1,2                          (3.15) 

                                                            

Variance of hi , i =1,2 are calculated as 

𝜎ℎ1

   2 =
1

2𝜋
∫ ∝1 |

𝑎11

|P(𝜔)|
|

2

𝑑𝜔 + ∫ ∝2 |
𝑎12

|P(𝜔)|
|

2

𝑑𝜔
∞

−∞

∞

−∞
          (3.16)                    

𝜎ℎ1

   2 =
1

2𝜋
∫ ∝1 |

iω

−ω2+
2r

k
 S∗(iω)+λ2S∗I∗

|

2

𝑑𝜔 +
∞

−∞

∫ ∝2 |
−λS∗

−ω2+
2r

k
 S∗(iω)+λ2S∗I∗

|

2

𝑑𝜔
∞

−∞
                                          (3.17) 

𝜎ℎ2

   2 =
1

2𝜋
∫ ∝1 |

𝑏11

|P(𝜔)|
|

2

𝑑𝜔 + ∫ ∝2 |
𝑏12

|P(𝜔)|
|

2

𝑑𝜔
∞

−∞

∞

−∞
          (3.18) 

𝜎ℎ2

   2 =
1

2𝜋
∫ ∝1 |

λI∗

−ω2+
2r

k
 S∗(iω)+λ2S∗I∗

|

2

𝑑𝜔 +
∞

−∞

∫ ∝2 |
iω+

2r

k
 S∗

−ω2+
2r

k
 S∗(iω)+λ2S∗I∗

|

2

𝑑𝜔
∞

−∞
                                          (3.19) 

(i)When ∝1= 0; ∝2= 0 then 𝜎ℎ1

   2 = 𝜎ℎ2

   2 = 0                         (3.20)      

(ii)When ∝2= 0, then 

𝜎ℎ1

   2 =
∝1

2𝜋
∫

ω2

(−ω2+
2r

k
 S∗(iω)+λ2S∗I∗)2

  𝑑𝜔
∞

−∞
                                (3.21) 

𝜎ℎ2

   2 =
∝1

2𝜋
∫

(λI∗)2

(−ω2+
2r

k
 S∗(iω)+λ2S∗I∗)2

  𝑑𝜔
∞

−∞
                                (3.22) 

(iii)When ∝1= 0, then 

𝜎ℎ1

   2 =
∝2

2𝜋
∫

(λS∗)2

(−ω2+
2r

k
 S∗(iω)+λ2S∗I∗)2

  𝑑𝜔
∞

−∞
                               (3.23) 

𝜎ℎ2

   2 = 
∝2

2𝜋
∫

(iω+
2r

k
 S∗)2

(−ω2+
2r

k
 S∗(iω)+λ2S∗I∗)2

 𝑑𝜔
∞

−∞
                               (3.24) 

 Larger the intensity more chance for network to get unstable or 

infected.
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4. NUMERICAL SIMULATIONS: 

 

Fig 1(a) 

 

 

Fig 1(b) 
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Fig 1(c) 

 

Fig 1(d) 
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Fig 1(e) 

 

Fig 1(f) 
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Fig 1(g) 

 

 

Fig 1(h) 
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Figures 1(a) to 1(h) are the time series projections of susceptible 

and infected nodes population with the values of attributes as 

k=1000; 𝜆=0.01; 𝜀=0.2; d=0.1; r=0.9; for various noise 

intensities 0.002;0.001 (for Fig 1(a)), 0.02;0.01(for Fig 1(b)), 

1;0.9 (for Fig 1(c)), 6;5 (for Fig 1(d)), 12;10 (for Fig 1(e)), 

30;25(for Fig 1(f)), 60;55 (for Fig 1(g)), 100;85 (for Fig 1(h)).

 

Fig 1(g) 

 

 

Fig 1(h) 
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Figures 1(g) and 1(h) are the time series projections of 

susceptible and infected nodes population with the values of 

attributes as k=1000; λ=0.01; ε=0.2; d=0.1; r=0.9; for various 

noise intensities  60;55 (for Fig 1(g)), 100;85 (for Fig 1(h)).

 

 

Fig 2(a) 

 

Fig 2(b) 
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Figure 2(a) shows the variation in susceptible nodes and Figure 

2(b) shows the variation in infected nodes for various values of 

𝜆=0.005;0.05;0.1;0.2 along with other attributes k=1000;  

𝜀=0.2; d=0.1; r=0.9.

 

 

Fig 3(a) 

 

Fig 3(b) 

https://gaspublishers.com/


Page 138 
©GAS Journal of Multidisciplinary Studies (GASJMS). Published by GAS Publishers 

 

Figure 3(a) shows the variation in susceptible nodes and Figure 

3(b) shows the variation in infected nodes for various values of 

d=0.1;0.3;0.6;0.9 along with other attributes k=1000; 𝜆=0.01; 

𝜀=0.2; r=0.9;.

 

Fig 4(a) 

 

Fig 4(b) 
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Figure 4(a) shows the variation in susceptible nodes and Figure 

4(b) shows the variation in infected nodes for various values of 

r=0.1;0.9;1.9;2.9 along with other attributes k=1000; 𝜆=0.01; 

𝜀=0.2; d=0.1.

 

 

Fig 5(a) 

 

Fig 5(b) 
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Figure 5(a) shows the variation in susceptible nodes and Figure 

5(b) shows the variation in infected nodes for various values of 

𝜀=0.1;0.3;0.6;0.9 along with other attributes k=1000; 𝜆=0.01;  

d=0.1; r=0.9. 

5. CONCLUDING REMARKS 

In this paper, we consider the impact of anti-virus 

capability on the network and offer a unique computer virus 

propagation model over a network. Among our principal 

contributions are the following: We examined the stochastic 

analysis using Fourier transform and derived a set of standards 

for evaluating its stability. These findings could contribute to 

our understanding of the regulations controlling the 

transmission of computer viruses over networks. It is crucial to 

gather a significant amount of pertinent data, estimate the 

model's parameters using stochastic analysis, the network's 

behaviour using our model, and observed that  the network in 

order to assess the efficacy of our model when applied to a real-

world network. The model may be effective if the network's 

behaviour closely matches to our observations of stochastic 

graphs. Stochasticity remarkably influences the proposed 

system at higher values of noise intensities. Parameter variation 

also influences the system greatly, which is presented well with 

the help of graphical results using simulation software 

MATLAB.  Hacking and different practices and process 

involved in hacking are the main gateways for the malware 

enter into any devices which collapse the system greatly is 

addressed in this article with the help of stochastic modelling 

and graphical parameter variation analysis on the proposed 

system.
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