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1. INTRODUCTION 

Nonparametric density estimation is advancing in 

many fields of study as its applicability is evidential in its 

strides in the Mathematical Sciences, Statistics, hydrology and 

so on due to no pre-specified functional form for the assumed 

distribution of data.  This density estimation differs from the 

parametric estimation that adopts any of Gaussian, Gamma, 

Cauchy as the underlying functional distributional form for the 

data with key assumptions.  The parametric estimation 

techniques include the Bayesian parametric estimation and 

maximum likelihood estimation and has validated an extra 

ordinary volume in dealing with both high dimensional data 

such as images, sound or videos and large data set (Lawal et al., 

2024).  The nonparametric estimation violates the assumptions 

on the data, thereby allowing the data speak to for themselves 

with the merit of being easier to understand which allows linear 

memory and sub linear query time for density estimation 

(Tosatto et al., 2021).   

Some notable methods like histogram, orthogonal series 

estimators, restricted maximum likelihood estimator and host 

of others.  In literatures, among these methods, the easiest and 

most popular is the histogram, which seems so easy to adopt at 

first instance most especially for identifying data distribution 

processes.  Due to its limitations in roughness, it has been 

replaced by other different nonparametric methods like the 

kernel density estimator, which is the basis of kernel smoothing 

techniques in nonparametric estimations (Fleming & Calabrese, 

2017).  The kernel density estimator has gained tremendous 

attention due the influence of computer software programs 

which allow it to be performed on data set of ten million 

samples in implementing its structures and its adoption depends 

on the expected complexity of the distribution and 

dimensionality of the data.   

The kernel density estimation is accredited for its data 

visualization and exploration which gives concise information 

about data under investigation (Ziane et al., 2021; Humbert et 

al., 2022).  It produces a smooth empirical probability density 

function (pdf) estimates which seems to be better represent the 

true probability density function of a continuous variable 

(Weglarcyzk, 2018).  The univariate dimensional 

representation of the kernel density estimator in its concise form 
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where ℎ𝑋 > 0 is the smoothing parameter, 𝑛 is the sample size,  

𝑋𝑖  are the sets of observations and 𝑥  is at which value the 

function is estimated and 𝐾(. ) is the kernel function which is 

non-negative, symmetric and usually a probability density 

function required to satisfy the axioms:

 

∫𝐾(𝑥)𝑑𝑥 = 1,∫ 𝑥𝐾(𝑥)𝑑𝑥 = 0  𝑎𝑛𝑑 ∫𝑥2𝐾(𝑥)𝑑𝑥 < 𝜇2(𝐾)                       (2) 

These axioms confirmed the kernel functions descriptive 

properties that help to determines the estimator’s rate of 

convergence.  The general form of this symmetric kernel family 

is:

 

𝐾𝑝[𝑢] =

(
1
2)𝑝+1
𝑝!

(1 − 𝑢2)𝑝                                                                                         (3) 

where 𝑝 = 0, 1, 2, … ,∞ is the polynomial index and its values 

produce Uniform, Epanechnikov, Biweight kernels 

respectively (Ejakpovi & Ozobokeme, 2024).  And when the 

polynomial index goes to infinity, it produces the Gaussian 

kernel function that exists in one, two and 𝑛 -dimensions 

respectively with 𝜎 as the inner scale that determines the spread 

of the Gaussian kernel function (Sha & Xie, 2016).  The kernel 

density estimator turns each data points into a smooth Gaussian 

bump and sum up all of these bumps to get a smooth estimated 

𝑝𝑑𝑓 .  This estimate is asymptotically equal to the actual 

probability density function (𝑝𝑑𝑓) 𝑓 plus some errors which 

decrease with large values of the sample sizes, 𝑛.  It is a suitable 

choice to trade performance determined by the mean squared 

error that decrease by 𝑛
−4

5⁄  with the crucial role of the 

smoothing parameter, ℎ𝑋 (Hang et al., 2018).   

The performance of the kernel density estimator is mesh 

independent because of the point wise convergence for 

literatures on kernel density estimator’s performance are on the 

increase. This necessitated the development of fast converging 

kernel estimators as a topical research in nonparametric 

estimation.   And some of these estimators include the average 

singular integral estimator (Delgado & Vildal-Sang, 2002), two 

new Kernel estimator (Rodchuen & Suwatte, 2011) and bias 

reduced kernel estimator (Xie & Wu, 2014).  Therefore, this 

paper is organized in the following sections: in section 2, we 

shall propose a new estimator, in section 3, we shall obtain the 

performance metrics of the proposed estimator, in section 4 we 

shall discuss results and conclude the study in section 5. 

2. METHODS AND MATERIALS 

The need of improving the performance of kernel 

estimators has led to several approaches of which the reduction 

estimators have been mostly considered methods.  The method 

stems from the 𝑟𝑡ℎ derivative of 𝑓(𝑥) which is expressed as:

 

 

𝑓(𝑟)(𝑥) =
1

𝑛ℎ𝑟+1
∑𝐾(𝑟) (

𝑋𝑖 − 𝑥

ℎ
)

𝑛

𝑖=1

                             (4) 

where 𝐾𝑟 = (−1)𝑟𝐻𝑟(x)𝐾(x) is the 𝑟𝑡ℎ derivative order of the 

kernel function with at least 𝑟  non-zero derivatives and 

incorporates the Hermite Series Polynomial of 𝑟𝑡ℎ derivatives 

orders (Raykar et al., 2010), (Raykar et al., 2015) and (Mynbaev 

et al., 2015).  The Mathematical formulation of the propose 

kernel estimator is:

 

{
 
 

 
 𝑚̃𝑛(𝑥) = 𝑓(𝑥) − 𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐 𝐵𝑖𝑎𝑠 (𝑓

𝑠(𝑥))

                 =
1

𝑛ℎ𝑋
∑𝐾(

𝑋𝑖 − 𝑥

ℎ𝑋
)

𝑛

𝑖=1

− 
ℎ𝑋
2𝐼2
2!

𝑓(𝑠+2)(𝑥)    
             (5) 

where 𝑠 = 0, 1, 2, … ,  ℎ𝑋  is the smoothing parameter and 

𝑓(𝑠+2)(𝑥) is the (𝑠 + 2) times continuously derivatives of the 

distributional function.  When the value of the differential order 

is fixed, taking 𝑠 = 0  in Equation (5) yield 𝑓(2)(𝑥)  whose 
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value is obtain from Equation (4) with the Hermite polynomial, 

𝐻2(𝑥) = 𝑥2 − 1 .  Thereafter, substitute its expression into 

Equation (5), generates the new nonparametric density 

estimator, called the Hermite Series Kernel Density Estimator 

One (𝐻𝑆𝑒𝐾𝐷𝐸 1) as:

 

  𝑚̃𝑛(𝑥) =
1

𝑛ℎ𝑋
∑𝐾(

𝑋𝑖 − 𝑥

ℎ𝑋
)

𝑛

𝑖=1

[1 −
𝐼2
2
({
𝑋𝑖 − 𝑥

ℎ𝑋
}
2

− 1)]           (6) 

 

where 𝐼2 = ∫𝑥2𝐾(𝑥)𝑑𝑥 , 𝑛 is the sample size of the random 

variable 𝑋, 𝑥 is at which value the function is estimated. 

3. PERFORMANCE METRICS 

The performance of any kernel density models takes 

several evaluation metrics, however the ease of Mathematical 

tractability, the global error criterion function called the 

asymptotic mean integrated squared error (𝐴𝑀𝐼𝑆𝐸)  shall be 

deduce for the Hermite Series Kernel Density Estimator One 

(𝐻𝑆𝑒𝐾𝐷𝐸 1) in Equation (6) and shown to improves the Bias 

and variance of the estimator. So, suppose 𝑓  is an unknown 

density function and kernel function satisfying the following 

axioms:

 

 

{
 
 
 
 
 

 
 
 
 
 ‖𝑓′′‖2

2 = ∫ (𝑓′′(𝑥))2𝑑𝑥 < ∞
∞

−∞

‖𝐾‖2
2 = ∫ 𝐾2(𝑥)𝑑𝑥 < ∞

∞

−∞

∫ 𝑥𝐾(𝑥)𝑑𝑥
∞

−∞

= 0

𝐼2 = ∫ 𝑥2𝐾(𝑥)𝑑𝑥
∞

−∞

< ∞

𝑓′′ 𝑖𝑠 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑙𝑦 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑖𝑛 𝑥

                       (7) 

 

Theorem 1: Under the axiom on 𝑓, 𝐾 𝑎𝑛𝑑 ℎ𝑋 for the estimate 

of 𝑚̃𝑛(𝑥) in Equation (6), the bias and variance of the Hermite 

Series Kernel Density Estimator One (𝐻𝑆𝑒𝐾𝐷𝐸 1) are:

 

 

Bias(𝑚̃𝑛(𝑥)) =
ℎ2𝐼2
2
𝑓′′(𝑥) −

𝐼2
2

2
𝑓(𝑥) +

𝐼2
2
𝑓(𝑥) +

ℎ2𝐼2
2

4
𝑓′′(𝑥)  + 𝑂(ℎ2) 

and  

𝑉𝑎𝑟(𝑚̃𝑛(𝑥)) =
1

𝑛ℎ
𝑓(𝑥)∫𝐾2(𝑡)𝑑𝑡 +

𝐼2
2𝑛ℎ

𝑓(𝑥)∫𝐾2(𝑡)𝑑𝑡 + 𝑂 (
1

𝑛ℎ
)                                  

 

Hence,  a measure of the global accuracy of 𝑚̃𝑛(𝑥) is the mean 

integrated squared error (𝑀𝐼𝑆𝐸) and since 𝑓(𝑥) is a probability 

function which is integrated over 𝑥 will result to the asymptotic 

mean integrated squared error (𝐴𝑀𝐼𝑆𝐸), given as:

 

𝐴𝑀𝐼𝑆𝐸(𝑚̃𝑛(𝑥)) =
ℎ4𝐼2

2

4
‖𝑓′′‖2

2 −
ℎ2𝐼2

3

2
𝛾 +

ℎ2𝐼2
2

2
𝛾 +

ℎ4𝐼2
3

4
‖𝑓′′‖2

2 +
𝐼2
4

4
+
ℎ2𝐼2

3

4
𝛾 −

𝐼2
3

2
−
ℎ2𝐼2

4

4
𝛾 +

𝐼2
2

4
+
ℎ4𝐼2

4

16
‖𝑓′′‖2

2 +
1

𝑛ℎ
‖𝐾‖2

2

+
𝐼2
2𝑛ℎ

‖𝐾‖2
2                                           (8) 

 

where 𝛾 = ∫𝑓′′(𝑥)𝑑𝑥.  On the basis of theorem 1, the asymptotic optimal smoothing parameter that minimizes the 𝐴𝑀𝐼𝑆𝐸(𝑚̃𝑛(𝑥)) is: 
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ℎ𝑜𝑝𝑡 = (
2(‖𝐾‖2

2)2

(𝐼2
2‖𝑓′′‖2

2)3 
)

1
13

𝑛
−2
13                                     (9) 

 

The choice of the optimal smoothing parameter, ℎ𝑜𝑝𝑡 of ℎ𝑋 is 

possible when all the quantities are all known in real data 

situation. Thus, the asymptotic optimal smoothing parameter in 

Equation (9) depends on the second derivatives of the 

underlying distribution which will  be replace with an estimate 

and has an order, 𝑂 (𝑛
−2

13). 

4. RESULTS AND DISCUSSIONS 

The proposed Hermite Series Kernel Density 

Estimator One (𝐻𝑆𝑒𝐾𝐷𝐸 1) is used in the visualization and 

exploration of two data set of which the asymptotic mean 

integrated squared error (𝐴𝑀𝐼𝑆𝐸 ) values of these data were 

computed using Equation (6) on the platform of  Mathematica 

version 12.3 software.  The first data is the amount of Revenue 

Spent by fifty (50) companies on Rural Development (McClave 

and Benson, 1988).  The kernel estimates of revenue spent 

depicts the amount spent on rural development.  The kernel 

estimates indicated that the data were unimodal with the 

application of the Bias reduced kernel estimator (𝐵𝑅𝐾𝐸) and 

the kernel density estimator (𝐾𝐷𝐸).  The mode is observed to 

be lying between 6 and 8 with the peak region at 8.  However, 

the proposed Hermite Series Kernel density estimator one 

𝐻𝑆𝑒𝐾𝐷𝐸 1  shows that the data is bimodal with the mode 

occurring at 7 and 13.  The regions of peaks of the data 

represented the most funds spent on rural development. The 

probabilities of the peaks of the various estimates lie between 0 

and 0.15.  The graphs below show the density estimates with 

selected kernels.

 
 

 

 

 
 

KDE

BRKE

HSeKDE 1

KDE

BRKE

HSeKDE 1

Fig. 1: Epanechnikov Kernel Estimates of Revenue Spent on Rural Dev. Data 

Fig. 2: Biweight Kernel Estimates of Revenue Spent on Rural Dev. Data 
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Fig. 3: Triweight Kernel Estimates of Revenue Spent on Rural Dev. Data 

 

 

 
Fig. 4: Gaussian Kernel Estimates of Revenue Spent on Rural Dev. Data 

 

The kernel estimates modality features of the observation data 

as shown in Figures 1, 2, 3, and 4 with the Epanechnikov, 

Biweight, Triweight and Gaussian kernel estimates of revenue 

spent on rural development by the estimators.  The Figure 4 

being the kernel estimates of the data with the  

Gaussian kernel function and the optimal smoothing parameters 

in this case are 1.20405, 1.09171  and 0.98804 using the 𝐾𝐷𝐸, 

𝐵𝑅𝐾𝐸 and 𝐻𝑆𝑒𝑘𝐷𝐸 1 respectively.  The unimodal property of 

the data by the 𝐾𝐷𝐸 shows that the highest revenue spent is 8 

dollars on rural development while both  

the 𝐵𝑅𝐾𝐸 and 𝐻𝑆𝑒𝐾𝐷𝐸 1 depict the bimodal property of the 

data with regions of highest revenue spent as 7 and 13.5 dollars 

on rural development.  Table 1 gives the smoothing parameters 

values, Statistical qualities and the measure of performance 

values of these kernel estimators.

 
 

Table 1:    𝑲𝒆𝒓𝒏𝒆𝒍 𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒐𝒓𝒔 Smoothing Parameters, Statistical Qualities and 𝑨𝑴𝑰𝑺𝑬 Values 
Estimators Kernels 

𝑅(𝐾)              𝜇2(𝐾)              ℎ𝑜𝑝𝑡  ∫𝐵𝑖𝑎𝑠
2(𝑚̃𝑛(𝑥))𝑑𝑥 

               Revenue Spent; Sample Size, 𝑛 = 50. 

∫𝑉𝑎𝑟(𝑚̃𝑛(𝑥))𝑑𝑥 
𝐴𝑀𝐼𝑆𝐸 

𝐾𝐷𝐸  Epan. 

Biweight 

Triweight 

Gaussian 

0.60000 

0.71429 

0.81585 

1 √2𝜋⁄  

0.20000 

0.14285 

0.11111 

1.00000 

2.12008 

2.51159 

2.85203 

1.20405 

1.54949E-03 

1.49553E-03 

1.46089E-03 

3.68020E-03 

5.52571E-03 

5.61427E-03 

5.69057E-03 

1.47208E-02 

7.07520E-03 

7.10980E-03 

7.15146E-03 

1.84010E-02 

𝐵𝑅𝐾𝐸 Epan. 

Biweight 

Triweight 

Gaussian 

0.60000 

0.71429 

0.81585 

1 √2𝜋⁄  

0.20000 

0.14285 

0.11111 

1.00000 

2.38788 

3.67973 

4.29248 

1.09171 

3.64353E-07 

2.17976E-07 

7.55895E-08 

5.05843E-04 

8.909220E-04 

5.218810E-03 

5.399070E-03 

4.046750E-03 

8.91286E-04 

5.21903E-03 

5.39915E-03 

4.55259E-03 

KDE

BRKE

HSeKDE 1

KDE

BRKE

HSeKDE 1
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𝐻𝑆𝑒𝐾𝐷𝐸 1 Epan. 

Biweight 

Triweight 

Gaussian 

0.60000 

0.71429 

0.81585 

1 √2𝜋⁄  

0.20000 

0.14285 

0.11111 

1.00000 

1.39010 

1.52264 

1.63013 

0.98804 

7.13991E-08 

2.97503E-08 

1.55068E-08 

1.98779E-07 

1.15722E-06 

2.24865E-05 

2.89614E-05 

4.94603E-05 

1.22862E-06 

2.25165E-05 

2.89614E-05 

4.96591E-05 

 

Generally, the performance of any kernel estimator is 

dependent of the choice of the smoothing parameters and least 

value of the asymptotic mean integrated squared error (𝐴𝑀𝐼𝑆𝐸) 

(Siloko et al., 2023) and (Yang, 2023).  It can be observed from 

Table 1 that as the power of the kernels increases, the smoothing 

parameter and 𝐴𝑀𝐼𝑆𝐸 values are also on the increase with the 

𝐻𝑆𝑒𝐾𝐷𝐸 1 having the minimal values in these parameters.  The 

computed 𝐴𝑀𝐼𝑆𝐸  values of the 𝐻𝑆𝑒𝐾𝐷𝐸 1  clearly shows it 

outperformed the other kernel estimators and it achieved the 

smallest value of precision error of  0.0000496591 with the 

Gaussian kernel.  

The second data is the ages at marriage for one hundred (100) 

women that applied for marriage licenses in Cumberland 

County, Pennsylvania USA (Sabine and Brian, 2004).  The 

kernel estimates of ages at marriage of women is the years in 

time of their marriage. The kernel estimates indicated that the 

data have multimodality property through the visualizations 

displayed by the three kernel estimators.  The peak of women 

marital age lies between 20 and 28 years of the women’s age 

and revealed the age gap when marriages are usually more.  The 

probability of getting married at these ages is high for the men 

but it tends to reduce between ages 30 and 40.  A careful 

investigation of the kernel estimates also shows that between 

ages 42 and 58, there is probability of contracting marriage 

perhaps for widows or late decision makers.  The probabilities 

of the peaks estimate lie between 0 and 0.038.  The graphs 

below show the density estimates with selected kernels.

 

 

 
Fig. 5: Epanechnikov Kernel Estimates of Ages of Women at Marriage Time Data  

 

 
Fig. 6: Biweight Kernel Estimates of Ages of Women at Marriage Time Data 

 

KDE

HSeKDE 1

BRKE

KDE

BRKE

HSeKDE 1
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Fig. 7: Triweight Kernel Estimates of Ages of Women at Marriage Time Data 

 

 
Fig. 8: Gaussian Kernel Estimates of Ages of Women at Marriage Time Data 

 

 

The kernel estimates modality features of the investigation data 

as shown in Figures 5, 6, 7 and 8 with the Epanechnikov, 

Biweight, Triweight and Gaussian kernel estimates of the ages 

of men at marriage time by the estimators.  A critical study of 

the Figure 8 being the kernel estimates of the data with the 

Gaussian kernel function and its smoothing parameters in this 

case as 1.63847, 1.58001and 1.14918 give the visualizations 

using the 𝐾𝐷𝐸 , 𝐵𝑅𝐾𝐸  and 𝐻𝑆𝑒𝐾𝐷𝐸 1  respectively.  The 

multimodality property of the observed data was affirmed by 

the estimators with more visualized features displayed by the  

𝐵𝑅𝐾𝐸 and 𝐻𝑆𝑒𝐾𝐷𝐸 1. The Figure 8 revealed that at age 22 the 

region of the highest peak, indicates the probability of 

contracting more marriages was confirmed by the estimators.    

Table 2 gives smoothing parameter, Statistical qualities and 

measure of performance of these kernel estimators.

 
Table 2:    𝑲𝒆𝒓𝒏𝒆𝒍 𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒐𝒓𝒔 Smoothing Parameters, Statistical Qualities and 𝑨𝑴𝑰𝑺𝑬 Values 

Estimators Kernels 
𝑅(𝐾)              𝜇2(𝐾)              ℎ𝑜𝑝𝑡  ∫𝐵𝑖𝑎𝑠

2(𝑚̃𝑛(𝑥))𝑑𝑥 

           Ages at Marriage; Sample Size, 𝑛 = 100. 

∫𝑉𝑎𝑟(𝑚̃𝑛(𝑥))𝑑𝑥 
𝐴𝑀𝐼𝑆𝐸 

𝐾𝐷𝐸 Epan. 

Biweight 

Triweight 

Gaussian 

0.60000 

0.71429 

0.81585 

1 √2𝜋⁄  

0.20000 

0.14285 

0.11111 

1.00000 

2.88502 

3.41778 

3.88105 

1.63847 

5.19927E-04 

5.18470E-04 

5.09532E-04 

1.35221E-03 

2.07971E-03 

2.08988E-03 

2.10213E-03 

5.40886E-03 

2.59964E-03 

2.60835E-03 

2.61166E-03 

6.76107E-03 

𝐵𝑅𝐾𝐸 Epan. 

Biweight 

Triweight 

Gaussian 

0.60000 

0.71429 

0.81585 

1 √2𝜋⁄  

0.20000 

0.14285 

0.11111 

1.00000 

3.45594 

5.32563 

6.21244 

1.58001 

1.25875E-07 

7.53051E-08 

2.61142E-08 

1.74756E-04 

3.07791E-04 

7.91454E-04 

8.56140E-04 

1.39805E-03 

3.07917E-04 

7.91529E-04 

8.56166E-04 

1.57280E-03 

𝐻𝑆𝑒𝐾𝐷𝐸 1 Epan. 

Biweight 

Triweight 

Gaussian 

0.60000 

0.71429 

0.81585 

1 √2𝜋⁄  

0.20000 

0.14285 

0.11111 

1.00000 

1.61681 

1.77096 

1.89598 

1.14918 

6.69089E-09 

2.78794E-09 

1.45316E-09 

6.27626E-09 

1.09518E-07 

1.32760E-07 

1.45271E-07 

5.45915E-06 

1.16209E-07 

1.35548E-07 

1.45416E-07 

  5.46543E-06 

KDE

BRKE

HSeKDE1

KDE

BRKE

HSeKDE 1
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The comparison of the estimators error analysis in Table 2 

reveals that as the power of the kernels increases, the smoothing 

parameter and 𝐴𝑀𝐼𝑆𝐸 values are also on the increase with the 

𝐻𝑆𝑒𝐾𝐷𝐸 1 having the minimum values of these parameters.  

The computed 𝐴𝑀𝐼𝑆𝐸  values of the 𝐻𝑆𝑒𝐾𝐷𝐸 1  evidently 

shows it outperformed the other kernel estimators with the 

smallest value of error precision of  0.000000116209  and 

0.00000546543 with the optimum and Gaussian kernels.  

5. CONCLUSION 

In this study, we conclude that the results obtained 

from the Hermite series kernel density estimator one are better 

that the kernel density estimator and bias reduced kernel 

estimator.  We showed this by computing the asymptotic mean 

integrated squared error (AMISE) and the rates of convergence.  

The Table 1 and 2 showed the Statistical qualities and 

estimators performance parameters of the estimators, it 

becomes evidential that the Hermite series kernel density 

estimator one has the least asymptotic mean integrated squared 

error (AMISE) when compared with the other exiting 

estimators under real data applications. 
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