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1. INTRODUCTION 

 The Internet of Things (IoT) has evolved into one of 

the most transformative technological paradigms of the 21st 

century, revolutionizing how individuals, organizations, and 

governments interact with digital infrastructures. At its core, 

IoT refers to the integration of physical devices—ranging from 

household appliances and medical sensors to industrial control 

systems—into a networked environment where they can 

collect, exchange, and act upon data autonomously or semi-

autonomously (Atzori, Iera, & Morabito, 2017). The promise of 

IoT lies in its capacity to enhance operational efficiency, 

improve decision-making through real-time analytics, and 

enable novel business models such as predictive maintenance, 

smart cities, and connected healthcare (Perera, 2014). 

The scale of IoT adoption underscores its importance in the 

global digital economy. According to Statista (2024), the 

number of connected IoT devices worldwide is expected to 

exceed 30 billion by 2030, up from just 9.7 billion in 2020. 

These devices generate vast volumes of data, which, when 

integrated into machine learning and artificial intelligence 

platforms, hold the potential to reshape industries across supply 

chains, transportation, energy, and healthcare. Governments are 

increasingly leveraging IoT for national infrastructure, such as 

smart grids, intelligent transport systems, and digital 

surveillance, making it a critical backbone of digital society 

Copyright © 2025 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 

4.0 International License (CC BY-NC 4.0). 

The rapid proliferation of Internet of Things (IoT) devices has transformed modern industries, enterprises, and personal environments, 

enabling unprecedented connectivity and automation. However, this growth has also introduced a complex array of security 

vulnerabilities that remain insufficiently addressed in both practice and research. Critical gaps such as weak authentication 

mechanisms, insecure firmware updates, inadequate network segmentation, and poor vulnerability management expose IoT 

ecosystems to high-impact cyber threats. Unlike traditional IT systems, IoT environments are characterized by heterogeneous devices, 

resource-constrained architectures, and large-scale deployments, which complicate the identification, quantification, and 

prioritization of security risks. Existing approaches often emphasize qualitative assessments or focus narrowly on technical 

vulnerabilities without providing a systematic method to measure and compare risks across diverse IoT infrastructures. This study 

proposes a quantitative risk assessment framework tailored to IoT ecosystems, designed to bridge the gap between technical 

vulnerabilities and business-oriented decision-making. The framework integrates key risk parameters—vulnerability prevalence, 

exploit probability, asset value, and exposure factor—into a structured formula that computes the Annualized Loss Expectancy (ALE) 

for each identified threat scenario. By combining classical information security models with IoT-specific considerations such as 

device population, patching lag, and supply chain risks, the framework produces measurable outputs that enable organizations to 

rank threats by financial impact and cost-effectiveness of mitigation. Furthermore, the model incorporates Bayesian updating and 

Monte Carlo simulation to address uncertainty, allowing decision-makers to visualize risk distributions and confidence intervals 

rather than relying on point estimates alone. 
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(Roman, Zhou, & Lopez, 2018). 

Despite this promise, IoT ecosystems present a unique and 

complex security landscape. Unlike traditional information 

technology (IT) systems, IoT devices often possess constrained 

computational and energy resources, are deployed in 

uncontrolled environments, and rely on fragmented supply 

chains. These characteristics introduce vulnerabilities that 

extend beyond technical failures to systemic risks, affecting 

sectors as diverse as national security, public safety, and 

healthcare (Weber & Studer, 2016). 

The Internet of Things (IoT) has ushered in an era of 

unprecedented connectivity, with billions of devices now 

interconnected and exchanging data across a global network 

(Gubbi, Buyya, Marusic, & Palaniswami, 2013). This 

technological revolution has unlocked immense value, driving 

innovation in sectors ranging from smart homes and healthcare 

to industrial automation and critical infrastructure (IoT, 1645–

1660). However, the rapid and often haphazard deployment of 

IoT devices has outpaced the development of robust security 

measures, resulting in a landscape riddled with vulnerabilities 

and security gaps (Atzori, Morabito, 2010). These security gaps 

represent a significant and growing threat. The consequences of 

an IoT security breach can extend far beyond the digital realm, 

with the potential to cause physical harm, disrupt essential 

services, and compromise personal privacy (IoT, 2787–2805). 

The interconnected nature of IoT ecosystems means that a 

vulnerability in a single device can have a cascading effect, 

creating systemic risks that are difficult to predict and mitigate 

(Weber, 2010). 

Despite a growing awareness of these challenges, there is a lack 

of a systematic and quantitative approach to assessing the risks 

associated with IoT security gaps. While numerous studies have 

identified specific vulnerabilities, there is a need for a 

comprehensive framework that can be used to analyze and 

prioritize these gaps based on their potential impact. This is 

particularly important given the limited resources that are often 

available for IoT security. This paper addresses this need by 

proposing a quantitative risk assessment framework for 

identifying, analyzing, and prioritizing security gaps in IoT 

ecosystems. The framework is based on a comprehensive 

review of the IoT security literature and is validated through a 

series of case studies. Our research is guided by the following 

questions:  

a) What are the critical security gaps in current IoT 

ecosystems?  

b) How can the risks associated with these gaps be 

quantified in a systematic and repeatable manner?  

c) How can this quantitative risk assessment be used to 

inform security investment decisions?  

To answer these questions, we first conduct a comprehensive 

review of the literature to identify the most significant security 

gaps in IoT ecosystems. We then develop a multi-dimensional 

risk model that considers the likelihood of an attack, the 

vulnerability of the system, and the potential impact of a 

security breach. This model is then integrated into a quantitative 

risk assessment framework that can be used to prioritize 

security gaps and to guide the allocation of security resources.  

The primary contributions of this research are twofold. First, we 

provide a comprehensive overview of the critical security gaps 

in IoT ecosystems, drawing on a wide range of academic and 

industry sources. Second, we propose a novel quantitative risk 

assessment framework that can be used to analyze and prioritize 

these gaps. This framework provides a practical and effective 

tool for organizations to assess and manage the risks associated 

with IoT security. This paper is structured as follows. Section 2 

provides a review of the related work in the field of IoT security 

risk assessment. Section 3 presents our proposed quantitative 

risk assessment framework. Section 4 describes the case studies 

that were used to validate the framework. Section 5 discusses 

the results of our analysis. Finally, Section 6 concludes the 

paper and outlines directions for future research (Aydin, Noor, 

2021). 

2. RESEARCH HYPOTHESES 

 Research hypotheses are testable statements that 

predict relationships between variables in a study. In the context 

of IoT security, they guide inquiry by linking vulnerabilities, 

risk assessment methods, and outcomes. They enable 

researchers to validate whether quantitative frameworks 

effectively address critical security gaps and reduce 

organizational risks. 

i. H1: IoT ecosystems with heterogeneous devices exhibit 

significantly higher vulnerability prevalence than 

homogeneous IT environments. 

ii. H2: Quantitative risk assessment models (e.g., ALE-

based frameworks) provide more accurate and 

actionable risk prioritization for IoT ecosystems 

compared to qualitative assessment models. 

iii. H3: The inclusion of IoT-specific parameters (e.g., 

patching lag, device population, exploit probability) 

significantly improves the predictive validity of risk 

estimation models. 

iv. H4: Implementing quantitative IoT risk assessment 

frameworks enhance the cost–benefit efficiency of 

cybersecurity investment decisions for organizations. 

v. H5: IoT ecosystems with structured quantitative risk 

assessment frameworks experience a measurable 

reduction in annualized financial loss compared to those 

relying on traditional qualitative frameworks. 

 

3. PROBLEM STATEMENT 

 Despite growing awareness, IoT ecosystems remain 

plagued by persistent security gaps. These gaps manifest in 

several forms: 

i. Weak authentication and authorization mechanisms: 

Many IoT devices continue to rely on default passwords 

or lack robust identity management systems, making 

unauthorized access trivial (Bertino & Islam, 2017). 
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ii. Insecure firmware and software updates: A significant 

portion of IoT devices lacks secure, automated update 

mechanisms, leaving them perpetually vulnerable to 

known exploits (Sivaraman, 2016). 

iii. Limited cryptographic capabilities: Due to resource 

constraints, many devices use outdated or insufficient 

encryption, exposing sensitive data in transit (Sicari, 

2015). 

iv. Poor vulnerability management: IoT vendors often fail 

to provide timely patches, and device owners rarely have 

the expertise or tools to update systems manually 

(Roman, 2018). 

v. Supply chain vulnerabilities: The globalized nature of 

IoT production introduces risks from insecure hardware 

components or maliciously embedded backdoors 

(Nayak, 2020). 

vi. The consequences of these gaps are severe. IoT breaches 

can result in direct financial losses, reputational damage, 

operational disruptions, and threats to human safety. For 

instance, vulnerabilities in connected medical devices 

can compromise patient safety, while weaknesses in 

smart grid components can lead to widespread power 

outages (Alaba, 2017). 

3.1 The Expanding Attack Surface: Critical 

Security Gaps  

 The expansion of IoT devices has exponentially 

increased the attack surface for malicious actors. Each 

connected device represents a potential entry point into larger 

networks, and many devices are deployed with minimal or no 

security configuration. For instance, default or hardcoded 

credentials remain a common feature in consumer IoT devices, 

creating low-hanging opportunities for exploitation (Sicari et 

al., 2015). Once compromised, IoT devices can be weaponized 

as part of botnets, as evidenced by the infamous Mirai botnet 

attack in 2016, which exploited poorly secured IoT cameras and 

routers to launch one of the largest distributed denial-of-service 

(DDoS) attacks in history (Antonakakis, 2017). 

Moreover, the distributed nature of IoT ecosystems amplifies 

their vulnerability. Devices are often located outside traditional 

corporate perimeters, such as in homes, vehicles, or public 

infrastructure, where security monitoring and patching are 

inconsistent. Industrial IoT systems, particularly in sectors like 

manufacturing and energy, are frequently integrated with 

legacy systems that were never designed for Internet 

connectivity, thereby compounding security risks (Kolias, 

2017). 

As attackers become more sophisticated, IoT vulnerabilities 

increasingly intersect with advanced persistent threats (APTs) 

and state-sponsored cyber operations. IoT devices can be 

exploited not only to disrupt services but also to exfiltrate 

sensitive data, spy on users, or manipulate critical infrastructure 

systems. The convergence of IoT with 5G networks further 

accelerates this threat landscape by enabling ultra-low latency 

communications that can be abused for real-time cyber-physical 

attacks (Shafi, 2017). 

3.2  Limitations of Current Risk Assessment 

Approaches 

 The central challenge lies in how organizations 

currently evaluate and manage IoT security risks. Traditional 

risk assessment frameworks—such as NIST SP 800-30 (NIST, 

2012) and ISO/IEC 27005—provide structured methodologies 

for identifying and categorizing risks but remain primarily 

qualitative. They typically rank risks as “low,” “medium,” or 

“high” without quantifying the actual financial or operational 

impact. While such scales are useful for raising awareness, they 

are insufficient for executive-level decision-making where 

trade-offs between cost and risk reduction must be explicitly 

evaluated (Jones & Ashenden, 2016). 

Other models, such as the Common Vulnerability Scoring 

System (CVSS), assign severity scores to individual 

vulnerabilities (Mell, 2007). While CVSS is widely adopted, it 

fails to capture contextual parameters such as the prevalence of 

vulnerabilities across a device population or the economic 

consequences of exploitation. Similarly, the FAIR (Factor 

Analysis of Information Risk) model offers a quantitative 

framework but is designed for general IT systems rather than 

heterogeneous IoT environments with millions of devices and 

fragmented lifecycles. 

As a result, organizations face a persistent risk quantification 

gap in IoT security. Without quantifiable estimates of potential 

losses, resource allocation often becomes arbitrary, with 

security budgets distributed reactively rather than strategically. 

3.3 Rationale for a Quantitative Framework 

 To address these challenges, there is an urgent need for 

a quantitative risk assessment framework tailored specifically 

to IoT ecosystems. Such a framework should bridge the gap 

between technical vulnerabilities and business risk by assigning 

measurable economic values to security gaps. By leveraging 

metrics such as Single Loss Expectancy (SLE), Annualized 

Rate of Occurrence (ARO), and Annualized Loss Expectancy 

(ALE), organizations can prioritize risks based on expected 

financial impact rather than subjective judgment. 

Furthermore, IoT risk modeling must account for uncertainty. 

Given the evolving nature of IoT vulnerabilities and the scarcity 

of historical data, probabilistic methods such as Bayesian 

updating and Monte Carlo simulations provide a means to 

model risk distributions rather than static point estimates 

(Sallhammar et al., 2018). This enables decision-makers to 

evaluate both expected losses and the range of potential 

outcomes under varying assumptions. 

Ultimately, a quantitative framework empowers organizations 

to: 

i. Prioritize remediation of high-impact vulnerabilities. 

ii. Conduct cost–benefit analyses of mitigation strategies. 

iii. Communicate risk in financial terms that resonate with 

executives and policymakers. 
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iv. Establish a repeatable methodology that scales across 

diverse IoT deployments. 

4. OBJECTIVE OF THE RESEARCH 

 This study is guided by the following objectives: 

i. To identify and analyze critical security gaps inherent in 

IoT ecosystems. 

ii. To design a quantitative framework that incorporates 

IoT-specific parameters (device population, 

vulnerability prevalence, exploit probability, and 

exposure factor). 

iii. To demonstrate the framework’s application through 

case studies such as insecure firmware updates. 

iv. To evaluate the cost–benefit implications of mitigation 

strategies using financial risk modeling. 

v. To contribute a scalable and adaptable methodology for 

enterprises, governments, and researchers. 

4.1 Research Questions 

 Aligned with the objectives, the study seeks to answer: 

1. What vulnerabilities represent the most critical security 

gaps in IoT ecosystems? 

2. How can classical risk assessment models be adapted to 

capture IoT-specific parameters? 

3. What is the expected annualized loss of specific IoT 

vulnerabilities under realistic scenarios? 

4. How can probabilistic methods reduce uncertainty in 

IoT risk quantification? 

5. What practical insights can organizations derive from 

applying such a framework to resource allocation? 

4.2 Contributions and Significance 

 The significance of this study lies in its attempt to 

operationalize risk assessment for IoT ecosystems in ways 

that extend beyond descriptive or qualitative approaches. 

Specifically, the research contributes in three dimensions: 

i. Theoretical Contribution: By adapting ALE and related 

concepts to IoT, the study advances academic discourse 

on risk quantification in emerging technologies. 

ii. Practical Contribution: The framework provides 

organizations with a structured tool to quantify financial 

exposure, thereby improving cybersecurity investment 

decisions. 

iii. Policy Contribution: Regulators and standards bodies 

can leverage quantitative frameworks to develop 

benchmarks, mandates, or certification schemes that 

address systemic IoT risks. 

By addressing these dimensions, the study builds a bridge 

between technical vulnerability analysis and executive-level 

decision-making, ensuring that IoT security becomes a core 

element of organizational risk management rather than an 

afterthought. 

5. LITERATURE REVIEW 

 The literature on IoT security highlights the rapid 

proliferation of connected devices and the corresponding rise in 

vulnerabilities such as insecure firmware, weak authentication, 

and poor patch management (Sicari, 2015). Existing risk 

assessment frameworks like NIST SP 800-30 and ISO/IEC 

27005 provide structured methods but remain largely 

qualitative and insufficient for IoT-specific complexities 

(Kolias, 2017). Quantitative approaches, including FAIR and 

CVSS, offer valuable insights but often fail to incorporate 

device heterogeneity, large-scale deployment, and economic 

impacts (Mell et al., 2007). Thus, scholars emphasize the need 

for IoT-tailored, quantitative frameworks that better integrate 

technical and financial risks. 

5.1 Conceptual Framework 

 The conceptual foundations of IoT security and risk 

assessment revolve around the unique features of IoT 

ecosystems and how they differ from traditional IT 

infrastructures. Conceptually, IoT systems are not single, 

isolated entities but interconnected cyber-physical systems 

that blend sensing, communication, and actuation 

functionalities across diverse environments (Atzori, Iera, & 

Morabito, 2017). This heterogeneity introduces significant 

attack surfaces, which conceptually expand risk exposure. 

IoT devices are generally resource-constrained in terms of 

processing power, memory, and energy (Roman, Zhou, & 

Lopez, 2018). This limits their ability to support conventional 

cryptographic algorithms, intrusion detection systems, or 

continuous patching processes. Conceptually, these constraints 

mean that risk in IoT systems cannot be managed solely by 

replicating IT security measures but must account for 

contextual limitations. 

Another conceptual issue lies in device lifecycle management. 

IoT devices often have lifespans exceeding a decade, but 

vendor support for security updates typically ends within a few 

years (Sicari et al., 2015). The conceptual gap between 

expected operational life and supported security life introduces 

long-term vulnerabilities. 

Risk assessment models provide a conceptual framework to 

evaluate such vulnerabilities. Traditional models emphasize 

qualitative classification (e.g., “low, medium, high” risk). 

While simple, these approaches fail to provide quantifiable 

metrics for organizational decision-making (Jones & 

Ashenden, 2016). A quantitative framework—drawing on 

concepts such as Annualized Loss Expectancy (ALE), Single 

Loss Expectancy (SLE), and Exposure Factor (EF)—offers 

a structured method for translating vulnerabilities into financial 

and operational impacts. Conceptually, this aligns 

cybersecurity management with broader business risk 

management processes. 

Thus, the conceptual review shows a need to bridge technical 

vulnerabilities with economic impacts, emphasizing that IoT 
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security is not only a technological challenge but also a 

governance and financial decision-making problem. 

5.2 Empirical Framework 

 Empirical studies on IoT security consistently 

highlight widespread vulnerabilities and the inadequacy of 

existing mitigation measures. For instance, Kolias et al. (2017) 

empirically documented the Mirai botnet attack, showing how 

insecure consumer IoT devices, particularly cameras and 

routers, were hijacked to launch distributed denial-of-service 

(DDoS) attacks. This case provided empirical evidence of how 

poorly secured devices could destabilize global internet 

services. 

A 2020 report by ENISA (European Union Agency for 

Cybersecurity) surveyed IoT deployments and found that over 

60% of IoT devices in use were operating with outdated 

firmware, significantly increasing exploit probability. 

Empirical observations showed that the patching lag—the time 

between vulnerability discovery and device update—was a key 

determinant of systemic risk. 

In healthcare, empirical research by Alsubaei, Abuhussein, and 

Shiva (2017) revealed that connected medical devices often 

transmit sensitive data without strong encryption, exposing 

patients to risks of both privacy violations and safety-critical 

attacks. These findings empirically demonstrate that IoT 

vulnerabilities extend beyond economic losses to human safety 

and trust. 

Several empirical studies also highlight the economic burden of 

IoT insecurity. For example, Ponemon Institute (2022) 

estimated that the average cost of an IoT-related data breach 

exceeded $4 million, comparable to traditional IT breaches but 

often harder to detect due to device diversity. This underscores 

the need for quantitative approaches that can link vulnerability 

prevalence to expected monetary loss. 

Another body of empirical work focuses on risk modeling 

techniques. Studies applying the FAIR (Factor Analysis of 

Information Risk) model in IoT contexts show improved 

prioritization of vulnerabilities compared to qualitative 

assessments (Jones & Ashenden, 2016). However, FAIR’s 

empirical applications often require adaptations to account for 

IoT-specific variables, such as device population and patch lag. 

Finally, simulation-based empirical research has demonstrated 

the value of Monte Carlo techniques in capturing uncertainty in 

IoT risk. For instance, Refaey, Almajali, and Alazab (2020) 

used probabilistic simulations to estimate the impact of DDoS 

attacks across smart city infrastructures, showing how 

cascading effects could amplify losses beyond initial device 

failures. 

Empirically, the literature supports three conclusions: 

i. IoT vulnerabilities are widespread and systemic. 

ii. Existing qualitative models fail to quantify economic 

consequences. 

iii. Simulation-based and quantitative approaches yield 

more actionable insights for decision-making. 

5.3 Theoretical Framework 

 The theoretical underpinnings of IoT risk assessment 

draw from information security, risk management, and systems 

theory. 

1. Information Security Theories: Classical information 

security theory rests on the CIA triad—Confidentiality, 

Integrity, and Availability (Whitman & Mattord, 2021). 

In IoT, confidentiality is threatened by weak encryption, 

integrity by insecure firmware updates, and availability 

by large-scale DDoS attacks. The CIA framework 

provides a theoretical lens for understanding how 

vulnerabilities translate into risks. 

2. Risk Management Theories: Traditional risk 

management theories, including Expected Utility 

Theory (EUT), suggest that decision-makers evaluate 

risks by weighing potential losses against probabilities 

(Kahneman & Tversky, 1979). In IoT, this aligns with 

the computation of ALE where expected losses guide 

security investment. However, Prospect Theory 

(Tversky & Kahneman, 1992) highlights that decision-

makers often overweight low-probability events (e.g., 

rare catastrophic IoT failures) and underweight common 

risks, introducing bias into security investment. 

3. Socio-Technical Systems Theory: IoT is not merely a 

technical infrastructure but a socio-technical system 

where devices, humans, organizations, and policies 

interact (Trist, 1981). This theory emphasizes that 

security risks emerge not only from device 

vulnerabilities but also from poor governance, weak user 

practices, and fragmented standards. 

4. Quantitative Risk Theories: The theoretical basis of 

quantitative risk assessment lies in probabilistic risk 

analysis and Bayesian statistics. Bayesian theory 

provides a mechanism for updating risk probabilities 

(e.g., exploit likelihood) as new data becomes available 

(Gelman et al., 2013). This aligns with IoT’s dynamic 

environment, where vulnerabilities and exploits evolve 

rapidly. Monte Carlo simulation is grounded in 

probability theory, enabling estimation of outcome 

distributions rather than single deterministic values. 

5. Economic Theories: From an economic perspective, the 

Cost–Benefit Analysis (CBA) framework underpins risk 

mitigation strategies. By quantifying ALE and 

comparing it against mitigation costs, organizations can 

theoretically optimize investments (Hubbard, 2020). 

This provides a bridge between cybersecurity theory and 

managerial decision-making. 

Collectively, these theoretical perspectives reinforce the 

argument for a quantitative, IoT-specific risk assessment 

framework. They highlight that IoT security cannot be 

understood in isolation but requires integrating theories of 

security, probability, socio-technical interaction, and 

economics. 

The conceptual review identifies the unique vulnerabilities of 

IoT (heterogeneity, resource constraints, lifecycle mismatches). 
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The empirical review provides evidence of systemic 

vulnerabilities, financial losses, and the limitations of 

qualitative models, while the theoretical review anchors the 

study in information security, risk management, and economic 

theories. 

Together, these strands point to the necessity of a quantitative 

risk assessment framework that is theoretically sound, 

empirically validated, and conceptually grounded in the 

realities of IoT. 

6. RESULT AND DISCUSSION 

 The assessment of security risks in IoT ecosystems is 

a complex and multifaceted challenge. The unique 

characteristics of IoT, such as the heterogeneity of devices, the 

scale of deployments, and the close coupling between the 

digital and physical worlds, require a departure from traditional 

IT risk assessment methodologies. This section reviews the 

existing literature on IoT security risk assessment, highlighting 

the key approaches and identifying the gaps that our research 

aims to address. 

Several qualitative risk assessment frameworks have been 

proposed for the IoT. For example, the Threat, Vulnerability, 

and Risk Analysis (TVRA) method has been widely used to 

identify and assess security risks in a variety of contexts, 

including the IoT [6]. The TVRA method involves identifying 

the assets to be protected, the threats to those assets, and the 

vulnerabilities that could be exploited by those threats. The risk 

is then assessed based on the likelihood of the threat and the 

impact of the vulnerability being exploited. While the TVRA 

method is a useful tool for identifying and prioritizing risks, it 

is a qualitative approach that does not provide a quantitative 

measure of risk.  

Other researchers have proposed more quantitative approaches 

to IoT risk assessment. For example, [7] proposes a quantitative 

risk assessment model for the IoT that is based on the concept 

of the attack graph. The attack graph is a graphical 

representation of the different paths that an attacker can take to 

compromise a system. The model uses the attack graph to 

calculate the probability of a successful attack and the expected 

loss from the attack. While this approach provides a 

quantitative measure of risk, it is a complex and 

computationally intensive method that may not be practical for 

large-scale IoT deployments.  

More recently, there has been a growing interest in the use of 

machine learning and artificial intelligence (AI) for IoT risk 

assessment. For example, [8] proposes a machine learning-

based approach for predicting the risk of an IoT device being 

compromised. The model is trained on a dataset of known 

vulnerabilities and attacks, and it uses this data to predict the 

likelihood of a future attack. While this approach has the 

potential to provide a more accurate and dynamic assessment of 

risk, it is still in its early stages of development and requires a 

large amount of data to be effective. 

Despite the progress that has been made in the field of IoT risk 

assessment, there are several gaps in the existing literature. 

First, there is a lack of a comprehensive and systematic 

approach to identifying and analyzing security gaps in IoT 

ecosystems. While many studies have identified specific 

vulnerabilities, there is a need for a more holistic approach that 

considers the entire IoT ecosystem, from the devices to the 

cloud. Second, there is a need for a quantitative risk assessment 

framework that is both practical and effective. While some 

quantitative approaches have been proposed, they are often too 

complex or computationally intensive to be practical for large-

scale IoT deployments. Third, there is a need for a risk 

assessment framework that can be used to inform security 

investment decisions. The framework should be able to 

prioritize security gaps based on their risk level and to guide the 

allocation of security resources.  

This research aims to address these gaps by proposing a 

quantitative risk assessment framework for identifying, 

analyzing, and prioritizing security gaps in IoT ecosystems. The 

framework is based on a comprehensive review of the IoT 

security literature and is validated through a series of case 

studies. Our research provides a practical and effective tool for 

organizations to assess and manage the risks associated with 

IoT security.  

A Quantitative Risk Assessment Framework for IoT 

Security Gaps: To address the need for a systematic and 

quantitative approach to assessing IoT security gaps, we 

propose a novel risk assessment framework. The framework is 

designed to be both comprehensive and practical, providing a 

structured methodology for identifying, analyzing, and 

prioritizing security gaps in IoT ecosystems. The framework is 

based on a multidimensional risk model that considers the 

likelihood of an attack, the vulnerability of the system, and the 

potential impact of a security breach. 

a. Framework Overview 

 The proposed framework consists of four main stages, 

as illustrated in Figure 1:  

i. Gap Identification: The first stage involves identifying 

the security gaps in the IoT ecosystem. This is done 

through a combination of literature review, expert 

interviews, and vulnerability scanning.  

ii. Risk Analysis: The second stage involves analyzing the 

risks associated with each security gap. This is done 

using our multi-dimensional risk model, which is 

described in detail in the next section.  

iii. Risk Evaluation: The third stage involves evaluating 

the risks and prioritizing the security gaps based on their 

risk level. This is done using a risk matrix that combines 

the likelihood and impact of each risk. 

iv. Risk Treatment: The fourth stage involves developing 

a risk treatment plan to address the prioritized security 

gaps. This may involve implementing new security 

controls, changing existing processes, or accepting the 

risk. 
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Figure 1: Risk Assessment Process 

 

b. Multi-Dimensional Risk Model 

 The core of our framework is a multi-dimensional risk 

model that is used to analyze the risks associated with each 

security gap. The model considers three main factors:  

a) Likelihood: The likelihood of an attack that exploits the 

security gap. This is assessed based on the threat 

landscape, the attractiveness of the target, and the 

capabilities of the attacker.  

b) Vulnerability: The vulnerability of the system to the 

attack. This is assessed based on the presence of security 

controls, the effectiveness of those controls, and the ease 

of exploitation.  

c) Impact: The potential impact of a successful attack. This 

is assessed based on the criticality of the system, the 

sensitivity of the data, and the potential for physical 

harm. Each of these factors is assessed on a scale of 1 to 

5, with 1 being the lowest and 5 being the highest. The 

risk score for each security gap is then calculated by 

multiplying the scores for each of the three factors: 

Risk Score = Likelihood × Vulnerability × 

Impact  

 The risk score provides a quantitative measure of the 

risk associated with each security gap, allowing for a systematic 

and objective prioritization of risks.  

c. Risk Matrix 

 To facilitate the evaluation of risks, we use a risk 

matrix that combines the likelihood and impact of each risk. 

The risk matrix is a 5x5 grid, with the likelihood on the x-axis 

and the impact on the y-axis. The cells of the matrix are colored 

to indicate the level of risk, with red being the highest and green 

being the lowest.  

  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 2: Risk Matrix 

 

The risk matrix provides a visual representation of the risk level 

for each security gap, allowing for a quick and easy 

prioritization of risks. The security gaps with the highest risk 

level should be addressed first, followed by those with a 

medium risk level. The security gaps with a low risk level may 

be accepted or addressed at a later time. 

6.1 Case Studies 

 To validate our quantitative risk assessment 

framework, we conducted a series of case studies on different 

IoT ecosystems. The case studies were selected to represent a 

diverse range of application domains, including smart homes, 
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healthcare, and industrial control systems. For each case study, 

we applied our framework to identify, analyze, and prioritize 

the security gaps. The results of the case studies are summarized 

in this section. 

Case Study 1: Smart Home 

 The first case study focused on a typical smart home 

ecosystem, consisting of a variety of IoT devices, such as smart 

speakers, smart lighting, and smart thermostats. The devices 

were connected to a central hub, which was in turn connected 

to the internet. The security gaps identified in this ecosystem 

included weak authentication, insecure network services, and a 

lack of a secure update mechanism. 

The results of the risk assessment are shown in Table 1. As the 

table shows, the security gap with the highest risk score was 

Weak Authentication, with a risk score of 100. This was 

followed by Insecure Network Services, with a risk score of 75, 

and Lack of Secure Update Mechanism, with a risk score of 60.  

 

 

Security Gap  Likelihood  Vulnerability  Impact  Risk Score  

Weak Authentication  5  5  4  100  

Insecure Network Services  5  3  5  75  

Lack of Secure Update Mechanism  4  3  5  60  

Table 1: Risk Assessment for Smart Home Ecosystem 

 

Case Study 2: Healthcare 

 The second case study focused on a healthcare ecosystem, consisting of a variety of medical devices, such as insulin pumps, 

pacemakers, and patient monitoring systems. The devices were connected to a hospital network, which was in turn connected to the 

internet. The security gaps identified in this ecosystem included a lack of encryption, insecure software, and a lack of access control. 

The results of the risk assessment are shown in Table 2. As the table shows, the security gap with the highest risk score was Lack of 

Encryption, with a risk score of 125. This was followed by Insecure Software, with a risk score of 100, and Lack of Access Control, 

with a risk score of 80.

 

 

Security Gap  Likelihood  Vulnerability  Impact  Risk Score  

Lack of Encryption  5  5  5  125  

Insecure Software  5  4  5  100  

Lack of Access Control  4  4  5  80  

Table 2: Risk Assessment for Healthcare Ecosystem 

 

Case Study 3: Industrial Control System 

 The third case study focused on an industrial control 

system (ICS) ecosystem, consisting of a variety of sensors, 

actuators, and programmable logic controllers (PLCs). The 

devices were connected to a supervisory control and data 

acquisition (SCADA) system, which was in turn connected to 

the internet. The security gaps identified in this ecosystem 

included a lack of network segmentation, insecure protocols, 

and a lack of a security monitoring.  

The results of the risk assessment are shown in Table 3. As the 

table shows, the security gap with the highest risk score was 

Lack of Network Segmentation, with a risk score of 125. This 

was followed by Insecure Protocols, with a risk score of 100, 

and Lack of Security Monitoring, with a risk score of 80.  

 

Security Gap  Likelihood  Vulnerability  Impact  Risk Score  

Lack of Network Segmentation  5  5  5  125  

Insecure Protocols  5  4  5  100  

Lack of Security Monitoring  4  4  5  80  

Table 3: Risk Assessment for Industrial Control System Ecosystem 

 

The results of our case studies further demonstrate the effectiveness of our quantitative risk assessment framework for 



 

Umaru, M., Adenomon, M. O., Bassey, S. I., & Aimufua, G. I. O. (2025). Critical security gaps in IoT ecosystems: A 

quantitative risk assessment framework. GAS Journal of Engineering and Technology (GASJET), 2(8), [33-44]. 41 

 

identifying, analyzing, and prioritizing security gaps in IoT 

ecosystems. The framework provides a systematic and 

repeatable methodology for assessing the risks associated with 

IoT security, enabling organizations to make informed 

decisions about their security investments.  

The case studies also highlight the diversity of security gaps in 

different IoT ecosystems. In the smart home ecosystem, the 

most critical security gap was weak authentication, while in the 

healthcare ecosystem, it was the lack of encryption. In the 

industrial control system ecosystem, the most critical security 

gap was the lack of network segmentation. These findings 

underscore the importance of a tailored approach to IoT 

security, as the security requirements can vary significantly 

depending on the application domain.  

The results of our analysis are consistent with the findings of 

previous studies. For example, (Sasi, Habibi Lashkari, Iqbal, 

Xiang, 2023) found that weak authentication is a major security 

risk in smart home devices. Similarly, (Ojiewo, & Odekunle, 

2021) found that the lack of encryption is a major security risk 

in medical devices. Our research builds upon these previous 

studies by providing a more comprehensive and quantitative 

assessment of the risks associated with IoT security gaps.  

One of the key advantages of our framework is its flexibility. 

The framework can be adapted to different IoT ecosystems and 

can be used to assess a wide range of security gaps. The 

multidimensional risk model can be customized to reflect the 

specific characteristics of the IoT ecosystem, and the risk 

matrix can be tailored to the risk appetite of the organization.  

Another advantage of our framework is its practicality. The 

framework is designed to be easy to use and to require minimal 

resources. The use of a quantitative risk score provides a clear 

and objective measure of risk, enabling a systematic and 

transparent prioritization of security gaps. The use of a risk 

matrix provides a visual representation of the risk level, making 

it easy to communicate the results of the risk assessment to 

stakeholders.  

Despite its advantages, our framework has some limitations. 

One limitation is that it relies on subjective assessments of 

likelihood, vulnerability, and impact. While we have provided 

guidelines for assessing these factors, there is still a degree of 

subjectivity involved. To mitigate this limitation, we 

recommend that the risk assessment be conducted by a team of 

experts with diverse backgrounds and expertise.  

Another limitation is that the framework does not provide a 

detailed roadmap for risk treatment. While the framework helps 

to prioritize security gaps, it does not provide specific guidance 

on how to address them. The selection of appropriate security 

controls will depend on a variety of factors, including the cost 

of the controls, the technical feasibility of implementing them, 

and the risk appetite of the organization.  

Future work will focus on addressing these limitations. We plan 

to develop a more objective and data-driven approach to 

assessing likelihood, vulnerability, and impact. We also plan to 

develop a set of best practices and guidelines for risk treatment, 

providing specific recommendations for addressing the most 

critical security gaps. Finally, we will explore the use of 

machine learning and artificial intelligence (AI) to automate the 

risk assessment process and to provide real-time risk 

monitoring.  
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By aligning with professional codes of conduct in information 

security and research ethics, this study contributes responsibly 

to advancing knowledge while safeguarding societal interests. 

9. CONCLUSION AND RECOMMENDATION 

 This study proposed a quantitative framework to 

identify and prioritize IoT security gaps, validated across 

diverse ecosystems. The conclusion emphasizes its 

effectiveness in guiding risk-informed decisions, while 

recommendations urge adoption of data-driven, context-

specific, and collaborative strategies. Together, they provide a 

foundation for improving IoT resilience and security 

management. 

a. Conclusion 

 The rapid expansion of the Internet of Things has 

transformed industries, households, and critical infrastructures, 

but it has also introduced unprecedented security 

vulnerabilities. This paper addressed these challenges by 

proposing a quantitative risk assessment framework that 

identifies, analyzes, and prioritizes security gaps in IoT 

ecosystems. Unlike traditional qualitative approaches, the 

framework adopts a multidimensional risk model, integrating 

attack likelihood, system vulnerability, and breach impact into 

a structured and repeatable methodology. 

Validation through case studies in diverse application 

domains—including smart homes, healthcare, and industrial 

control systems—demonstrated the practical utility of the 

framework. Results confirmed its effectiveness in quantifying 

risks, enabling organizations to translate technical 

vulnerabilities into measurable financial and operational 

consequences. This evidence further emphasized the 

heterogeneity of IoT ecosystems, highlighting that a one-size-

fits-all security approach is insufficient and that risk 

management strategies must be tailored to specific contexts. 

The contributions of this study are twofold. First, it provides a 

consolidated overview of critical security gaps in IoT 

ecosystems, drawing on insights from both scholarly literature 

and industry practice. Second, it introduces a novel quantitative 

risk assessment framework that equips decision-makers with a 

practical tool for evaluating, prioritizing, and mitigating IoT 

risks. By aligning risk metrics with organizational objectives, 

the framework serves as a bridge between technical 

cybersecurity concerns and business-level decision-making. 

Future research should expand the framework’s scope to 

include additional IoT domains, particularly those emerging in 

smart cities and autonomous systems. Refinements will also 

target the incorporation of data-driven techniques to enhance 

objectivity in estimating likelihood, vulnerability, and impact. 

Furthermore, leveraging machine learning and artificial 

intelligence offers opportunities to automate risk assessments 

and deliver real-time monitoring of evolving threats, ensuring 

that organizations remain adaptive in dynamic threat 

landscapes. 

Ultimately, the proposed framework contributes to advancing 

both theory and practice in IoT security by shifting from 

subjective risk categorization to quantifiable, evidence-based 

assessments. Such an approach is essential for enabling 

organizations to manage the complex and evolving risks of IoT 

ecosystems effectively, ensuring resilience and trust in the 

digital future. 

b. Recommendation 

 Based on the findings of this study, several 

recommendations are proposed for researchers, practitioners, 

and policymakers engaged in managing IoT security risks: 

1. Adopt Quantitative Risk Assessment Frameworks: 
Organizations should move beyond qualitative risk 

matrices and embrace quantitative approaches that 

capture the financial and operational consequences of 

IoT security gaps. This shift will enable more evidence-

based decision-making and efficient allocation of 

security budgets. 

2. Develop Context-Specific Security Strategies: Given 

the heterogeneity of IoT ecosystems, risk management 

approaches must be tailored to specific domains such as 

healthcare, industrial control, or smart cities. One-size-

fits-all models are insufficient for addressing the 

diversity of threats. 

3. Strengthen Device Lifecycle Governance: 
Policymakers and industry stakeholders should establish 

minimum standards for patch management and software 

updates to reduce vulnerability prevalence throughout 

device lifecycles. 

4. Leverage Data-Driven and AI-Based Tools: 
Integrating machine learning and artificial intelligence 

into risk assessment processes can improve accuracy, 

automate detection, and enable real-time monitoring of 

evolving threats. 

5. Foster Cross-Sector Collaboration: Industry, 

academia, and regulatory bodies should collaborate to 

share data, best practices, and standardized metrics for 

IoT risk assessment, thereby improving comparability 

and scalability across domains. 

By implementing these recommendations, organizations can 

enhance resilience against IoT-specific threats, while 

policymakers can create enabling environments that balance 

innovation with security assurance. Future research should 

continue exploring advanced quantitative models and cross-

domain validation to further refine the practical applicability of 

IoT risk frameworks. 

Based on the findings of this study, several recommendations 

are proposed for researchers, practitioners, and policymakers 

engaged in managing IoT security risks: 

1. Adopt Quantitative Risk Assessment Frameworks: 
Organizations should move beyond qualitative risk 

matrices and embrace quantitative approaches that 

capture the financial and operational consequences of 

IoT security gaps. This shift will enable more evidence-
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based decision-making and efficient allocation of 

security budgets. 

2. Develop Context-Specific Security Strategies: Given 

the heterogeneity of IoT ecosystems, risk management 

approaches must be tailored to specific domains such as 

healthcare, industrial control, or smart cities. One-size-

fits-all models are insufficient for addressing the 

diversity of threats. 

3. Strengthen Device Lifecycle Governance: 
Policymakers and industry stakeholders should establish 

minimum standards for patch management and software 

updates to reduce vulnerability prevalence throughout 

device lifecycles. 

4. Leverage Data-Driven and AI-Based Tools: 
Integrating machine learning and artificial intelligence 

into risk assessment processes can improve accuracy, 

automate detection, and enable real-time monitoring of 

evolving threats. 

5. Foster Cross-Sector Collaboration: Industry, 

academia, and regulatory bodies should collaborate to 

share data, best practices, and standardized metrics for 

IoT risk assessment, thereby improving comparability 

and scalability across domains. 

By implementing these recommendations, organizations can 

enhance resilience against IoT-specific threats, while 

policymakers can create enabling environments that balance 

innovation with security assurance. Future research should 

continue exploring advanced quantitative models and cross-

domain validation to further refine the practical applicability of 

IoT risk frameworks. 
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