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1. Introduction 

 A great deal successes have been achieved in 

the field of machinery fault diagnosis and widely 

used in the real process recently. 

However, due to the complexity of machinery 

structures and works, there are a lot of difficulties in 

machinery fault diagnosis. Especially, when 

different kinds of faults co-exist, different fault 

features are combined each other, this makes it 

difficult to construct the mathematical model of 

faults and to perform reliable diagnosis. 

Two main steps are required for fault diagnosis: 

feature extraction and classification of fault. 

In order to extract fault features, measured 

vibrational signals should be processed by some 

signal processing methods, such as fast Fourier 

transform(FFT)[15], wavelet 

transform(WT)[16,17,21,26], empirical mode 

decomposition(EMD)[7,11] and blind source 

separation(BSS)[1-10], etc.  

The multi-fault of rotating machinery can be 

classified using fault features obtained from 

separated signals and some machine learning tools. 

There are different machine learning tools for 

classifying the multi-fault of rotating machinery, 

such as artificial neural network(ANN)[19], genetic 
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algorithm(GA)[23,24], support vector machines 

(SVM)[ 12,14,18], fuzzy identification(FI)[20], 

artificial immune system(AIS)[13,18], D-S theory of 

evidence[13] and principal component 

analysis(PCA)[22,25,26], etc. 

Among different methods, empirical mode 

decomposition (EMD) is of particular interest 

because of its highly adaptive nature in analyzing 

vibrations. EMD decomposes a signal into a series of 

intrinsic mode functions(IMFs) according to the 

signal characteristics, allowing the non-stationary 

and nonlinearity information of the signal to be 

revealed for more accurate characterization of 

signals, for example, gear fault diagnosis and rolling 

bearing fault diagnosis[7,11]. However, EMD often 

cannot extract fault features accurately because of 

the problem of mode mixing [11]. 

The dual-tree complex wavelet transform [17] is one 

of the few techniques to extract the multiple fault 

signatures in the rotating machine.  

If multiple sensors are used in the monitoring system, 

blind source separation (BSS) could be used to 

recover the unknown independent sources from 

observed signals mixed by an unknown propagation 

medium [6]. A drawback of traditional BSS is that 

the contributions of acquired separation signals for 

source signal are undeterminancy, i.e., the sum of 

separated signals is different from the source signal 

[9]. 

For a decade or so, the support vector machine 

(SVM) has been used widely in condition monitoring 

and fault diagnosis of machinery for the binary-fault 

classification of machine elements.  

D.J. Bordoloi [12] indicated that among numerous 

methods available in faults classifications the 

application of SVM is still uncommon. Looking into 

tremendous information contained in wavelets an 

attempt in conjunction with the SVM and the 

optimization of SVM parameters for the multi-fault 

classification would be a worth effort, which is 

lacking in available literatures [17].  

It is highly desirable to develop a fault diagnosis that 

can model and analyze diagnosis problems using 

uncertain information, which is likely to be 

incomplete and vague. 

Due to the power of the D-S theory in handling 

uncertainties, so far, it has found many application 

areas, for example, expert system, uncertainty 

reasoning. To avoid the drawbacks of using 

evidential theory alone to fault diagnosis, for 

example, its heavy calculation burden due to the 

exponential “explosion” of the focal elements 

involved by fault information and data combination, 

Qing Hua Zhang and Qin Hu [13] presented an 

integrated approach for the concurrent fault 

diagnosis using artificial immune algorithm and 

evidential theory, aiming to not only improve the 

diagnosis rate but also increase the reliability of 

diagnostic conclusion. 

This paper suggests a multi-fault diagnosis method 

using the single fault samples of rotating machinery. 

To separate multi-fault signals, an enhanced blind 

source separation matching source contributions of 

separated signals and finds the contributions of the 

separated signals for the source signals.   

In addition, the immune detectors for diagnosing 

single faults are constructed using AIS and the 

standard single fault samples presented by previous 

researchers. To improve the convergence of AIS and 

to increase the variety of solution, a new objective 

function combining affinity information and density 

information is proposed. All separated signals are 

passed through immune fault detectors and the 

possibilities of the fault generation are found.  

Finally, the quantitative contributions of the 

separated signals for source signal are found, and 

multi-fault is diagnosed by these contributions and 

data fusion theory. 

The comparison of presented and conventional 

method are performed. The effectiveness of the 

diagnosis method presented in this paper is verified 

by simulation and experiment. 
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2. Theoretical background 

2.1 Enhanced blind source separation 

 The main idea of blind source separation is to 

determine the most proper estimates y, finding 

separation matrix W under the condition in which 

independent source signal S and mixing matrix A are 

unknown. i.e. 

ASWxWy TT                              (1) 

Where W is separation matrix. 

Now there are several methods for determining 

separation matrix W. 

The main idea of Minimal Mutual information (MMI) 

is to choose the weight matrix W of neural network, 

minimizing the interdependencies between output 

signals.  

The expression [3] for correcting the weight matrix 

satisfying the condition to minimize the mutual 

information of separation signals is written as  

WyyI
dt

dW T ))((                           (2) 

Where   is learning rate, )(  is series of nonlinear 

functions.  

Using expression (2), final separation signal y is 

obtained. 

This is the first stage for separating mixed vibration 

signal.  

The obtained separation signals satisfy the condition 

minimizing mutual information, but the source 

contributions are unknown.  

It is important to find source contributions 

quantitatively, especially for condition monitoring 

and fault diagnosis. 

This paper proposes an enhanced blind source 

separation for finding the source contributions of 

separated signals quantitatively.   

 The main idea of the enhanced blind source 

separation is described as follows. 

First, fast Fourier transform is performed for mixed 

signal x and separation signal y, and amplitude 

spectrum X and Y are found. 

 






 dtetf ftj 2)()( xX                            (3) 






 dtetf ftj 2)()( yY                            (4) 

The scaled signals are written as 

αYY                                          (5) 

 

Where α  is scaling coefficient matrix of separated signals, Y is separation signal vector, and Y  is scaled 

separation signal vector. 

Then the sum of scaled separation signals should be similar to the mixed source signal measured from sensor, 

therefore following objective function will be satisfied: 
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Substituting Expression (5) into expression (6) yields 
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Where N is the sampling length of measured signal and 
sn is the number of source signals.  

From the extremal condition of expression (7), following 
ss nn   linear equations are obtained: 

ss

N

j

N

j

n

k

mjkjkiijmj nmniYYXY
s

,,2,1,,,2,1,0)(
2/

1

2/

1 1

  
  

αG    (8) 

Solving equation (8), scaling coefficient matrix α  is obtained. 

From expression (5), scaled approximate separation signals are obtained. 

These signals not only don’t change mutual information, but also satisfy real scales for source signals. 

This process will be performed every stage. 

Performing Fourier inverse transform for modified signals, scaled time domain signal )(ty  is obtained. 






 dfefYty tfj 2)()(                                   (9) 

Then expression (2) can be modified as 

WyyI
dt

dW T ))((                                  (10) 

The expression (10) is a formula for correcting weight matrix of the enhanced BSS. 

This is the second stage for finding source contributions of separated signals. 

 

 

2.2. Algorithm for generating AIS fault detectors 

2.2.1. Main steps of AIS learning algorithm 

 Artificial Immune system (AIS) has many 

abilities such as learning, memory, self-regulation, 

and pattern recognition and feature extraction and so 

on [18]. 

This paper uses Clone Selection Algorithm (CSA) of 

AIS to create immune fault detectors. 

AIS learning algorithm consists of following steps: 

 ⅰ) The ith fault sample to be trained is iAg , antigen (a 

set of fault sample) is written as

),,,( 21 bAgAgAgAg  . 

The size of population N, maximum clone size cN , 

convergence error   and generation T are selected 

and memory matrix M is initialized. 

ⅱ) A set of antigen is inputted to the network and n 

antibody nAb are generated randomly. 

ⅲ) If stopping condition isn’t satisfied, following 

loop is performed: 

 (ⅰ) Following steps are performed for every antigen 

iAg of antigen Ag . 

①The affinities between every antibody 
}{NAb  and 

antigen iAg  are calculated. 

②The density of antibody 
}{NAb  is calculated. 

③The antibodies, whose density affinities are larger 

than threshold 
pt are selected and they are selected as 

the clone antibody collection of next generation. 

④Creating the clone cells for the selected antibody 

collection, clone antibody populations 
jAb  are 

constructed. 
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⑤Performing mutation for clone antibody 

populations
jAb , clone mutation antibody 

populations *
jAb  are constructed. 

⑥Calculating affinities between clone mutation 

antibody population *
jAb  and antigen iAg , selecting 


 antibodies, whose affinities are large relatively, 

and new antibody population **
jAb  is constructed. 

⑦Calculating the similarity coefficients between 

antibodies in antibody populations **
jAb , suppressing 

antibodies, whose thresholds larger than threshold
st

, memory cell population 
im  is obtained for antigen

iAg . 

(ⅱ)Suppressing antibodies whose densities iD
 
are 

larger than threshold at  
in total memory matrix M, 

memory cell population eM
 
is obtained for every 

antigen. 

Creating antibodies randomly and adding them to 

memory cell population, new antibody population is 

constructed and we return to step (1) 

ⅳ)  Iteration is halted. 

Halting condition of algorithm is to reach a fixed 

order T. 

After completing iteration, we can obtain finally the 

memory cell population 
eM  for every antigen.  

  

2.2.2. Calculation of AIS parameters 

 Using following expressions, the parameters of AIS are calculated: 

① Affinity 

The normalized Euclidean distance between antigen iAg  and antibody 
jAb
 
is represented as: 












m

k

ik

m

k

jkik

ij
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AbAg

d

1

1

2)(

                             (11) 

Then, affinity can be calculated as: 

ij

ij
d

F



1

1
                                 (12) 

In order to limit the range of 
ijF

 
to 0~1, we choose 4101  for  .  

It’s shown that affinity increases if the distance between antigen and antibody decreases. 

②Stimulation degree and density of antibody  

The antibodies whose densities are close each other in some degree are regarded as identical antibodies. 

From the physical meaning of antibody, its density can be written as 






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
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Where 
iD  is the density of ith antibody, 

ijW  is the stimulation degree of antibody, 
ijS  is the similarity between 

antibody i and j, ta is density threshold, and n is total number of antibody.   

The similarity between antibodies i and j can be represented as: 
















m

k

ik

m

k
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ij

ij
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H

H
S

1

1

2)(

1

1



                      (14) 

Where 
ijH  is the distance function between antibody i and j, we select   as 4101 , similarly to expression (12).    

Expression (13) shows that the more there are similar antibodies in the memory cell, the more stimulation degree 

and density increase, and Expression (14) shows that the smaller the distance between an antibody and another 

antibody is, the more the similarity between them increases. 

In order to increase the affinity, to decrease the density and to improve the variety of antibodies, This paper 

proposes following objective function:  

max:2
1









i

ijij
D

FJ                        (15) 

Where 3101   and 4101 . 

From expression (15), if 0iD , 1




iD
,

 

and, if 1iD , 0




iD
. 

Also, 
i  

is the weight coefficient for density and affinity, we can select it to satisfy 1 i
 . 

In this paper, we select 0.65 and 0.35 for 1  and 2 , respectively. 

It’s shown that the larger the affinity between antigen and antibody is and the smaller the density of antibody is, 

the more the objective function increases. 

Using expression (15), in the initial stage, we can choose the antibodies whose affinities are larger and similarities 

are smaller, so we can increase the convergence speed of the algorithm and improve the variety of antibodies. 

The framework of the algorithm is shown in Figure 1. 
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3. Multi-fault diagnosis of rotating machinery 

3.1 Simulation of enhanced BSS algorithm 

In order to verify the effectiveness of proposed enhanced BSS algorithm, by mixing following signals, 

simulation for separating signals is performed: 

)2cos(75.0 11 tfs   

)]2[cos(25.0 22 tfsigns   

)(3 trandns   

The time waves of source signals are shown as figure 2, 3 and 4. 

Fig1. Fault detector generation algorithm based on CSA 

Identify 
antigen 

Randomly generate initial 
antibodies 

Evaluate objective 
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Fig 2.Time waves of source signal 1 

 

 

Fig 3.Time waves of source signal 2 

 

 

Fig 4.Time waves of source signal 3 
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The mixing matrix is given by following matrix of random number: 



















6435.02356.03456.0

5365.01362.02143.0

6834.02856.01245.0

A
 

 

Following mixed signals are obtained using the source signals and the mixing matrix: 

 

Fig5.Time waves of mixed signal 1 

 

 

Fig6.Time waves of mixed signal 2 
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Fig7.Time waves of mixed signal 3 

 

The algorithm was converged after about 5000 iterations (Figure 8, 9 and 10). 

 

Fig 8. Time wave of separation signal 1 

 

Fig 9. Time wave of separation signal 2 
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Fig 10. Time wave of separation signal 3 

 

Figure 8, 9 and 10 show that the separated signals are different from the source mixed signals in their scales. 

Then, separation simulation is performed using the proposed enhanced BSS algorithm. 

The obtaibed scaling coefficient matrix is: 



















743.0422.09042.0

508.2096.2668.2

650.2643.1948.0

α
 

 

Figure 11 and 12 show the source mixed signal and the composed signal. 

 

Fig 11. Mixed signal 
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Fig 12. Composed signal 

 

Figure 11 and 12 show that the source signals are almost identical with the composed signals... 

It’s shown that the enhanced BSS algorithm proposed in this paper doesn’t change the mutual information of 

signals and also can maintain the source contributions of separated signals. 

3.2 Generation of single fault detectors 

The power spectrum components are obtained for 7 typical faults and 9 frequency bands. 

The peak values are found for every frequency band and defined by iE , ni ,1 . 

In order to use it as the input data of CSA, iE are normalized as following dimensionless parameters: 

niEEX
n

k

kii ,1/
1

 


                 (16) 

iX  are in range of 0~1 and satisfy 1
1




n

i

iX . 

Following vector are constructed by the calculated parameters: 

],,,,,,,,[ 987654321 XXXXXXXXXA                (17) 

Expression (17) is used for the training sample to generate single fault detectors. 

Table 1 shows the training samples for 7 typical rotor faults. 

 

Table 1. Detector training samples for 7 typical rotor faults 

N

o 
Fault pattern 

Spectrum energy distribution 

Frequency band 

0.01

~ 

0.39 

0.4

~ 

0.49

0.5fn 

0.51

~0.9

9 fn 

1 fn 2 fn 
3~

5 fn 

Odd 

times 

of fn 

>5 fn 
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* fn is the frequency of rotation. 

100 fault detectors are generated for every fault. 

 

Figure13~22 show 5 fault detectors for every fault. 

 

Fig13. Immune Fault Detectors of unbalance 

 

Fig14. Immune Fault Detectors of oil film resonance 

 

 

fn* fn 

1 Unbalance 0.0 0.0 0.0 0.0 0.9 
0.0

5 

0.0

5 
0.0 0.0 

2 Rotor radial friction 0.1 0.1 0.0 0.1 0.2 0.1 0.2 0.1 0.1 

3 Misalignment 0.0 0.0 0.0 0.0 0.4 0.5 0.1 0.0 0.0 

4 Rotor cracking 0.0 0.0 0.0 0.4 0.2 0.2 0.0 0.0 0.2 

5 Bearing looseness 0.5 0.4 0.0 0.0 0.0 0.0 0.1 0.0 0.0 

6 
Casing support 

looseness 
0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.5 0.0 

7 Oil film resonance 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Fig15. Immune Fault Detectors of misalignment 

 

 

Fig16. Immune Fault Detectors of misalignment 

 

 

Fig 17. Immune Fault Detectors of casing support looseness 

 

 

Fig 18. Immune Fault Detectors of rotor radial friction 

 

 

Fig 19. Immune Fault Detectors of rotor cracking 

 

 

The contributions of separated signals for source signals are defined as 
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Where ss nnnm ,1,,1 
 

The number of detectors for a fault type i ( kki       ,,1  is the number of faults) is given as N. 

Comparing the fault feature vector for separation signals with every fault detector, if the Euclidean distance 

between them is less than a threshold, 1 is added to the concerned counter
ijD . 

The possibility of jth separation signal belonging to ith fault can be written as: 

ssijij njniND ,1,,1, /                    (19) 

Determining fault generating possibilities for
 sn  separation signals and performing data fusion, the fault scores 

are calculated for every fault as: 

s

n

j

ijiji nicS
s

,1,
1




                           (20) 

Arranging these values in order, the types and intensity of fault can be evaluated quantitatively. 

4. Application example 

4.1 Test rig 

 In this research work, the test rig(Dynamics Key Laboratory, Kim Chaek University of Technology, DPRK) shown 

in Figure 20 is used to measure vibrational data, which consists of six parts such as motor, rotor, accelerometer, preamplifier, 

invertor and data acquisition. 

Two sensors are mounted in horizontal and vertical directions of rotor to acquire fault signals from the test rig. 

 

 

 

 

 

 

 

Fig 20. Test rig for rotor fault simulation: (1) motor, (2) rotor, (3) accelerometer, 

(4) preamplifier, (5) invertor, (6) data acquisition 
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Using the test rig, multi-faults of rotor such as 

unbalance combined with misalignment et al. can be 

simulated. 

4.2 Multi-fault diagnosis 

 Unbalance and misalignment are simulated in 

the test rig, and vibrational signals are measured by 

two piezoelectric acceleration sensors installed on 

the bearing housing horizontally and vertically. 

The vibrational signals measured with 2 sensors and 

their spectrum diagrams are shown as Figure 21, 22, 

23 and 24. 

 

 

 

Fig 21. Time wave of vibration signal in sensor 1 

 

 

Fig 22. Time wave of vibration signal in sensor 2 

 

Fig 23. Spectrum Diagram of vibration signal for sensor 1 

 

1fn 2fn 3fn 5fn 
1fn 2fn 3fn 

5fn 
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Fig 24. Spectrum Diagram of vibration signal for sensor 2 

 

The frequency fn(103.5Hz) corresponds to the 

frequency for rotational speed(6 200r/min) of Figure 

23 and 24. 

For the vibration signals shown in Figure 23 and 24, 

signal separations are performed using the enhanced 

BSS. 

After 6 000 iterations, the algorithm is converged. 

Figure 25, 26, 27, and 28 show the time waves and 

spectrum diagrams after separations. 

As shown in Figure 28, the vibrational component 

corresponding to two times of rotational frequency, 

is eliminated in a large amount and unbalance fault 

feature is shown more obviously. 

On the other hand, as shown in Figure 27, the 

vibrational component corresponding to two times of 

rotational frequency and the vibrational component 

corresponding to rotational frequency are shown 

concurrently.

 

 

 

Fig 25. Time wave of vibration signal of channel 1 
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Fig 26. Time wave of vibration signal of channel 2 

 

 

 

 

 

 

 

Fig 27. Spectrum Diagram of vibration signal of channel 1 

 

 

Fig 28. Spectrum Diagram of vibration signal of channel 2 

 

The diagnosis result is shown in table 2. 

The diagnosis result shows that separated signal 2 is caused by unbalance and separated signal 1 is caused by 

misalignment. 

The fault diagnosis is performed for the separated signals using immune detectors. 
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Table 2. Fault diagnosis result 

No 

fault type 

unbalance friction misalignment crack 
bearing 

looseness 

casing 

support  

looseness 

oil film 

resonance 

Separation 

signal 1 
0.920 0.000 0.080 0.000 0.000 0.000 0.000 

Separation 

signal 2 
0.180 0.000 0.820 0.000 0.000 0.000 0.000 

 

So, we can diagnose that the multi-fault by unbalance and misalignment is generated in the rotor 

From table 2, the score matrix for every fault is: 

 











820.0180.0

080.0920.0
η

                          

(21) 

The contributions of separation signals 1 and 2 are obtained as: 











527.0583.0

472.0461.0
C

                          

(22) 

Using table 2 and expression (21), the data fusion is performed as: 
























537.0

462.0

527.0820.0583.0180.0

472.0080.0461.0920.0
S

           

(23) 

From expression (23), we can evaluate quantitatively that the intensities of unbalance and misalignment are 46.2% 

and 53.7%, respectively. 

 

Conclusion 

 This paper suggests an enhanced blind source 

separation and applies to find new separation signals 

matching source contributions of separated signals. 

In addition, the immune detectors for diagnosing 

single faults are constructed using AIS and the 

standard single fault samples presented by previous 

researchers. 

In order to improve the convergence of AIS and to 

increase the variety of solution, a new objective 

function combining affinity information and density 

information is proposed.  

All separated signals are passed through immune 

fault detectors and the possibilities of the fault 

generation are found.  

Finally, the contributions of separated signals for the 

source signal are found, and multi-fault is diagnosed 

using these contributions and data fusion theory. 

The effectiveness of the diagnosis method presented 

in this paper is verified using the simulation and the 

comparison to the traditional method and the 

experimental data.  
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