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Introduction 

Accurate forecasting of household energy 

consumption is critical to achieving energy 

efficiency, reducing electricity costs, and supporting 

grid stability in residential sectors. With global 

energy systems transitioning toward intelligent 

automation, artificial intelligence (AI) has emerged 

as a transformative tool in predicting power demand 

patterns. According to (Eddaoudi, Aaraba, 

Boudmena, Elghazi, and Rahmani (2024), AI models 

provide enhanced accuracy compared to traditional 

statistical methods by learning complex relationships 

in large-scale consumption data. 

Short-term load forecasting (STLF) plays a 

vital role in residential energy management, enabling 

households and utility providers to plan more 

effectively. G. R., Sreedharan, and Binoy (2025) 

demonstrated that hybrid approaches combining 

artificial neural networks with ensemble learning 

techniques significantly outperform standalone 

models in demand response scenarios. This finding 

underscores the advantage of integrated model 
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architectures when forecasting energy usage under 

varying residential conditions. 

Real-time energy forecasting has also 

advanced through the use of bio-inspired and 

bidirectional deep learning techniques. Cheng and 

Vu (2024) developed a bidirectional long short-term 

memory (BiLSTM) model capable of capturing 

forward and backward temporal dependencies in 

electricity usage, leading to improved forecast 

precision in smart homes. Complementing this, 

(Zhao, Zhao, Chen, Alsenani, Alotaibi, and 

Abuhussain (2025) explored enhanced recurrent 

neural networks (RNNs) for simultaneous 

forecasting of residential energy consumption and 

price behavior, emphasizing the economic value of 

intelligent forecasting systems. 

Given the high solar potential in Southeast 

Asian countries, especially the Philippines, 

integrating renewable energy considerations into 

load forecasting is crucial. Mallala, Ahmed, Mallala, 

Pamidi, Faruque, and Reddy (2025) developed a 

model that forecasts global sustainable energy output 

using random forest algorithms, highlighting the 

viability of data-driven approaches for renewables in 

resource-rich regions. Furthermore, Abu-Salih, Abu-

Salih, Marrable, Wongthongtham, Liu, and Morrison 

(2022) demonstrated how smart meter data, when fed 

into deep learning models, could accurately forecast 

both consumption and solar generation in rooftop 

photovoltaic (PV) systems. 

Beyond temporal trends, spatial and 

behavioral dimensions are increasingly included in 

modeling frameworks. Peng, Kimmig, Wang, Niu, 

Liu, Tao, and Ovtcharova (2024)proposed a spatio-

temporal model that captures user behavior patterns 

across both time and location, improving prediction 

accuracy for smart environments. Hasan (2025)also 

designed an IoT-based forecasting model using 

improved long short-term memory (LSTM), 

emphasizing the importance of real-time sensor data 

in capturing dynamic energy usage trends at the 

household level. 

Explainability has also become a central 

theme in recent literature. Krishnamurthy, Kumar, 

and Choudhary  (2024) stressed that AI models used 

for energy forecasting should balance predictive 

accuracy with transparency to foster trust and 

usability among end-users. Moreover, privacy and 

data security are growing concerns in the energy 

sector. (Manzoor et al., 2024) explored centralized 

and decentralized federated learning models for load 

forecasting, advocating for decentralized systems 

that enhance privacy and adversarial robustness in 

smart buildings. 

This study responds to these findings by 

developing an ensemble model combining a deep 

neural network (DNN) and XGBoost regressor to 

forecast household energy consumption in Negros 

Occidental, Philippines. By incorporating climate 

conditions, household size, appliance usage, and 

temporal factors, the model aims to generate reliable 

consumption forecasts while ensuring model 

interpretability and adaptability. This AI-assisted 

forecasting approach supports informed energy 

decisions, sustainable behavior, and future 

integration with renewable energy systems in 

residential settings. 

Objectives of the Study 

The objective of the study is to develop and evaluate 

an AI-assisted ensemble forecasting model for 

residential energy consumption in Negros Occidental 

using machine learning techniques with these 

following features: 

1. To design and develop an AI-assisted 

ensemble model for household energy 

forecasting using DNN and XGBoost. 

2. To train the model using residential data from 

Negros Occidental, including climate, 

appliance, and demographic features. 

3. To evaluate the performance of the individual 

and combined models in terms of predictive 

accuracy and generalization. 

4. To identify key influencing factors on 

household energy use based on model 

outputs. 

Significance of the Study 

This study makes a significant contribution to 

sustainable household energy management by 

developing a reliable, AI-assisted forecasting model 

specifically designed for the socio-environmental 
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context of Negros Occidental. Leveraging the 

combined strengths of deep learning and gradient-

boosted decision tree algorithms, the model captures 

both complex temporal patterns and structured 

feature relationships in residential energy data. This 

hybrid architecture not only enhances forecast 

accuracy but also provides practical, real-time 

insights that empower households to monitor and 

adjust their electricity usage proactively. 

A notable innovation of this research is its 

integration of explainable AI components, which 

allow users and stakeholders to understand how 

predictions are generated and which variables most 

influence consumption trends. This transparency 

builds user confidence and encourages behavioral 

change, making the technology more accessible to 

non-technical users and increasing the likelihood of 

its adoption in community energy programs. 

Furthermore, the model’s design anticipates 

the growing integration of distributed energy 

resources, such as rooftop solar systems, in 

Philippine homes. By enabling better planning and 

self-regulation of power usage, the system supports 

household-level contributions to national 

sustainability targets. It also offers a scalable and 

adaptable framework that can be replicated in other 

regions facing similar challenges, such as fluctuating 

grid reliability, uneven access to smart meters, and 

increasing energy costs. 

In essence, the study bridges the gap between 

advanced AI techniques and grassroots energy 

efficiency efforts, offering a forward-looking tool 

that aligns with both technological trends and policy 

goals. Its emphasis on localized, explainable, and 

renewable-aware forecasting provides a replicable 

model for energy-conscious living in developing 

communities. 

Scope and Limitations 

The scope of this research is confined to 

residential energy consumption forecasting within 

selected households in Negros Occidental. The study 

utilizes historical consumption records, smart meter-

derived features, and environmental parameters to 

train an ensemble model composed of a deep neural 

network and XGBoost regressor. While the system is 

optimized for household-level predictions, it does 

not address energy use in industrial, commercial, or 

agricultural sectors. Limitations include potential 

data imbalance, restricted access to high-resolution 

smart meter data, and dependency on the accuracy of 

external environmental datasets. Additionally, the 

model performance may vary based on sensor 

availability and internet connectivity in rural areas. 

 

Study Setting 

This research was conducted in Negros 

Occidental, a province located in the Western 

Visayas region of the Philippines, known for its 

agricultural economy, emerging urban centers, and 

vibrant local communities. The province is home to 

a wide range of residential settings—from densely 

populated urban barangays to remote rural 

households—each exhibiting unique patterns of 

electricity usage. These patterns are shaped by 

various factors including income levels, appliance 

ownership, household size, and climate variability. 

Additionally, frequent brownouts and unstable grid 

infrastructure in some areas highlight the urgent need 

for predictive tools that can assist in managing 

energy use more efficiently. 

The diversity of residential contexts in 

Negros Occidental offers an ideal testbed for 

evaluating the performance and adaptability of AI-

based energy forecasting systems. The study’s 

localized focus ensures that the forecasting model is 

trained on real-world data reflective of the challenges 

and consumption behaviors specific to the region. 

Furthermore, the province's abundant solar 

irradiance presents a compelling case for 

incorporating solar energy data into forecasting 

models, making it a strategic site for exploring how 

AI can support the transition to cleaner, decentralized 

power systems. By situating the research in Negros 

Occidental, the study not only enhances its practical 

relevance but also contributes to the growing body of 

work supporting regional energy innovation in the 

Philippines. 

Materials and Methods 

This study employed a supervised machine 

learning approach to forecast household energy 
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consumption using an ensemble model composed of 

a deep neural network (DNN) and an XGBoost 

regressor. The ensemble strategy was chosen to 

combine the strengths of both models: the DNN's 

ability to capture complex, nonlinear patterns in 

time-series data and XGBoost's efficiency in 

handling structured, tabular features through 

gradient-boosted decision trees. This complementary 

integration aimed to improve forecast stability and 

accuracy across diverse household profiles. 

The dataset used in this research consisted of 

historical electricity consumption records collected 

from various households in Negros Occidental. It 

included not only energy usage data in kilowatt-

hours (kWh) but also auxiliary features such as 

average monthly temperature, household size, 

number of continuous and non-continuous 

appliances, and floor area in square meters. These 

features were selected based on their known 

influence on residential electricity demand and their 

availability from local sources. The inclusion of 

weather-related and demographic variables allowed 

the model to account for seasonal trends and 

lifestyle-related consumption behaviors. 

Data preprocessing involved cleaning and 

normalization of numerical features, one-hot 

encoding of categorical variables (e.g., month), and 

partitioning into training and testing subsets. Both 

models in the ensemble were trained on the same 

processed input features, and their predictions were 

averaged to generate the final output. This machine 

learning pipeline was implemented using Python 

with libraries such as TensorFlow, XGBoost, and 

Pandas, ensuring a reproducible and scalable 

modeling process..

 

 

 
Figure 1. Household Energy Consumption Dataset 

 
 

The dataset used in this study, as illustrated 

in Figure 1, was loaded using the Python 

programming language and the pandas library for 

data manipulation. It contains detailed household 

energy consumption data from Negros Occidental, 

with each record comprising features such as the 

month, total floor area (in square meters), number of 

household occupants, average monthly temperature, 

and average appliance load in watts for both 

continuous and non-continuous devices. The dataset 

also includes the total number of appliances per 

category and the corresponding energy consumption 

measured in kilowatt-hours (kWh). 

To verify the structure and consistency of the 

data, the head() function was used to inspect the first 

five rows. This preliminary check confirmed that the 

dataset was properly formatted and ready for 

preprocessing. In preparation for model development 

and visualization, additional libraries were imported, 

including tensorflow for building the deep learning 

model and matplotlib.pyplot for plotting training 

metrics and results. This structured data served as the 

foundation for training and evaluating the AI-

assisted forecasting models.
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Data Preprocessing 
 

 
Figure 2. Data preprocessing 

 

 
 

 

Data preprocessing, as illustrated in Figure 2, 

involved several steps to prepare the dataset for 

model training. Numerical features—such as floor 

area, average temperature, and appliance load 

values—were normalized using the MinMaxScaler 

to ensure that all values were scaled between 0 and 

1, preventing any single feature from dominating the 

learning process. Categorical variables, particularly 

the 'Month' attribute, were encoded using one-hot 

encoding, allowing the models to treat each month as 

an independent input without implying any ordinal 

relationship. 

The dataset was then partitioned into training 

and testing sets following an 80:20 ratio, ensuring 

that the models could be trained effectively while 

retaining a portion of the data for unbiased 

evaluation. To streamline preprocessing and 

maintain consistency across both the DNN and 

XGBoost models, a ColumnTransformer was used to 

apply appropriate transformations to specific 

columns in a single pipeline. This approach ensured 

that both models received inputs with the same 

structure and scale, improving training efficiency 

and comparability of results. 

Model Creation 
 

The ensemble model architecture 

implemented in this study was composed of two 

distinct but complementary components designed to 

leverage the strengths of both deep learning and 

gradient boosting techniques: 

1. The first component was a Deep Neural 

Network (DNN) developed using the 

TensorFlow/Keras framework. The DNN 

consisted of multiple fully connected 

hidden layers, each employing the ReLU 

(Rectified Linear Unit) activation 

function to introduce non-linearity into 

the model. To mitigate overfitting, 

dropout regularization was applied 

between layers, randomly deactivating a 

fraction of neurons during training. This 

neural network was specifically 

structured to capture complex and 

nonlinear relationships among input 

features, such as the interactions between 
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temperature, appliance usage, and 

household size. 

2. The second component was an XGBoost 

regressor, a tree-based ensemble learning 

algorithm known for its high performance 

on structured, tabular data. The model 

was configured using optimized 

hyperparameters, including a learning 

rate, number of estimators, maximum tree 

depth, and subsampling ratio. XGBoost 

effectively handled feature importance 

and captured interactions among 

variables with minimal preprocessing. 

Together, these two models formed an ensemble 

architecture where predictions from both were 

averaged to produce the final output. This hybrid 

strategy enhanced overall model robustness by 

balancing the high-capacity learning of the DNN 

with the feature interpretability and stability of 

XGBoost.

 

 

 
Figure 3. Deep Neural Network Architecture 

 

 

The deep neural network (DNN) architecture 

used in this study, as shown in Figure 3, was 

implemented using the Keras Sequential API. The 

architecture consists of five fully connected (Dense) 

layers with decreasing output dimensions of 1024, 

512, 256, 128, and 1, respectively. Between each of 

the first four Dense layers, Dropout layers were 

inserted to randomly deactivate neurons during 

training and thus reduce overfitting. ReLU (Rectified 

Linear Unit) activation functions were applied to all 

hidden layers to introduce non-linearity and 

accelerate training convergence. The final layer uses 

a linear activation to output a single numerical value 

representing the predicted energy consumption in 

kilowatt-hours (kWh). In total, the model comprises 

709,633 trainable parameters, with each layer 

designed to gradually reduce the feature 

dimensionality while learning complex interactions 

within the input data. 

The second component of the ensemble is the 

XGBoost regressor, a high-performance, gradient-

boosted decision tree model optimized for tabular 
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data. The model was initialized with the following 

hyperparameters: 

● n_estimators = 16,000 

● learning_rate = 0.05 

● max_depth = 5 

● subsample = 0.8 

● colsample_bytree = 0.8 

● random_state = 42 

These parameters controlled the number of 

boosting rounds, the pace at which the model learns, 

and the proportion of rows and features sampled at 

each iteration. This configuration was selected to 

balance model complexity and generalization, 

allowing XGBoost to effectively capture feature 

interactions without overfitting. 

Together, the DNN and XGBoost models 

formed a robust ensemble architecture capable of 

learning from both structured features and high-

dimensional representations, improving overall 

forecasting performance for household energy 

consumption. 

Callbacks 

During the training phase of the deep neural 

network, two callback functions were implemented 

to enhance performance, stabilize learning, and 

prevent overfitting: 

● EarlyStopping was employed to monitor the 

mean absolute error (MAE) on the validation 

set. Training was automatically halted if no 

improvement in MAE was observed for 10 

consecutive epochs. This mechanism ensures 

that the model does not over-train on the data, 

thus minimizing the risk of overfitting and 

reducing unnecessary computational time. 

When triggered, the callback restored the 

model weights from the epoch with the best 

recorded validation performance. 

● ReduceLROnPlateau was used to 

dynamically adjust the learning rate during 

training. Specifically, if the validation loss 

did not improve for 5 consecutive epochs, the 

learning rate was reduced by a factor of 0.2, 

down to a minimum threshold of 1e-6. This 

gradual reduction in learning rate allowed the 

model to make finer adjustments during later 

training epochs, especially as it approached a 

local or global minimum. 

Both callbacks were implemented using the 

tf_keras.callbacks module, ensuring efficient and 

adaptive training behavior. These training strategies 

contributed to faster convergence and improved 

generalization of the deep learning model on unseen 

household energy consumption data. 

Results 

The ensemble model 

This section presents the outcomes of the AI-

assisted energy consumption forecasting models 

trained on household-level data from Negros 

Occidental. The study evaluated the performance of 

three predictive setups: the deep neural network 

(DNN), the XGBoost regressor, and their ensemble 

combination. Each model was assessed using 

standard regression metrics, including mean absolute 

error (MAE), root mean squared error (RMSE), and 

the coefficient of determination (R²), to provide a 

comprehensive view of predictive accuracy and 

generalization capability. 

The results encompass model training 

dynamics, final evaluation scores on the test dataset, 

and comparative analysis of performance across the 

three modeling approaches. Training behavior—

such as early stopping criteria and learning rate 

adjustments—is also discussed to contextualize 

convergence and stability. The findings demonstrate 

the individual strengths of both the DNN and 

XGBoost models while highlighting the enhanced 

reliability and reduced prediction error achieved 

through the ensemble method. Overall, this section 

supports the hypothesis that hybrid AI models 

improve the accuracy and consistency of household 

energy consumption forecasts in real-world settings. 

Training Performance of the Deep Neural 

Network 

The deep neural network as depicted in 

Figure 4 was trained for a maximum of 1000 epochs 

but terminated early at epoch 26 due to the 
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EarlyStopping callback. The model achieved its 

lowest validation mean absolute error (val_mae) of 

approximately 537.02 at epoch 16, which was 

automatically restored as the final model.

 

 

 
Figure 4. Training Performance of the Deep Neural Network 

 
 

 

During the initial training phase of the deep 

neural network (DNN), both training and validation 

mean absolute error (MAE) values exhibited a steep 

decline, indicating that the model was learning 

effectively from the input data. Specifically, the 

training MAE dropped from 3704.49 in epoch 1 to 

629.54 by epoch 16, while the validation MAE 

improved from 2838.26 to 537.02 over the same 

period. This consistent reduction across both datasets 

suggests that the model was not only fitting well to 

the training data but also generalizing effectively to 

unseen samples. 

The training process was governed by the 

EarlyStopping callback, which monitored the 

validation MAE and halted training when no further 

improvement was observed over 10 consecutive 

epochs. In this case, training ceased at epoch 26, and 

the model weights were restored to those from epoch 

16, where the lowest validation MAE was recorded. 

This early stopping mechanism played a critical role 

in preventing overfitting and ensuring that the model 

maintained optimal performance based on validation 

accuracy.

 

Final Model Evaluation 
 

 
Figure 5. Model Evaluation 

 
 

 

After completing the training phase, the deep 

neural network (DNN) was evaluated on the test 

dataset, as illustrated in Figure 5. The model 

achieved a mean absolute error (MAE) of 575.08, 

reflecting the average difference between the 

predicted and actual household energy consumption 

values in kilowatt-hours. This relatively low MAE 

demonstrates the model’s strong ability to produce 

accurate forecasts on previously unseen data. 

The result also validates the effectiveness of 

the EarlyStopping strategy used during training. 

Despite halting the process early at epoch 26, the 

model successfully retained the optimal weights 

from epoch 16, confirming that it maintained its 

generalization performance. The close alignment 
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between the validation and test MAE values further 

indicates that the model did not overfit the training 

data and was capable of reliably predicting energy 

usage across a variety of household profiles in 

Negros Occidental.

 

 

 

Training and Validation Loss Curve 
 

 
Figure 6. Training and Validation Loss Curve 

 

 

Figure 6 displays the training and validation 

loss curves across 26 epochs of model training. Both 

the mean absolute error (MAE) and loss values 

showed a sharp decline during the early epochs, 

reflecting rapid learning and effective parameter 

updates. Notably, by approximately epoch 5, the rate 

of improvement began to slow, and the curves 

gradually leveled off. From that point onward, only 

minor fluctuations were observed in both training 

and validation metrics until the EarlyStopping 

callback halted the training process. 

Throughout the training phase, the gap 

between the training and validation curves remained 

consistently narrow, indicating that the model 

generalized well and avoided overfitting. The 

parallel behavior of the two curves suggests that the 

model was not simply memorizing the training data 

but learning meaningful patterns applicable to 

unseen inputs. This visual confirmation of balanced 

learning supports the quantitative results and further 

validates the robustness of the model design and 

training strategy.

 

 

The ensemble model achieved superior performance 

 
Figure 7. Performance Metrics of the Deep Neural Network 

 

The performance of the deep neural network 

(DNN) on the test dataset is summarized in Figure 7, 

using standard evaluation metrics. The model 

achieved a Mean Absolute Error (MAE) of 557.82, a 

Mean Squared Error (MSE) of 490,783.99, and a 

Root Mean Squared Error (RMSE) of 700.62. In 
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addition, the coefficient of determination (R² score) 

was recorded at 0.815, indicating that the model was 

able to explain approximately 81.5% of the variance 

in household energy consumption. 

These results confirm that the DNN was 

effective in capturing the complex, nonlinear 

relationships inherent in the residential energy 

dataset. The relatively low MAE and RMSE values 

suggest that prediction errors remained consistently 

small across the test samples, while the high R² score 

reflects strong model generalization. Collectively, 

these metrics demonstrate that the DNN provided 

accurate and reliable forecasts, making it a suitable 

candidate for practical energy consumption 

prediction in real-world household settings.

 

Performance of the XGBoost Regressor 
 

 
Figure 8. Performance Metrics of the XGBoost Regressor 

 

 
 

The XGBoost regressor produced the 

following performance metrics on the test dataset, as 

illustrated in Figure 8: a Mean Absolute Error (MAE) 

of 601.07, a Root Mean Squared Error (RMSE) of 

765.69, and an R² score of 0.779. These results 

indicate that the model successfully explained 

approximately 77.9% of the variance in household 

energy consumption. 

Although the XGBoost model performed 

slightly below the deep neural network (DNN) in 

terms of accuracy, it still demonstrated solid 

generalization capabilities and predictive strength. 

The relatively low error values and strong R² score 

confirm that XGBoost effectively learned the 

relationships within the structured input data. Its 

performance reinforces the model’s suitability for 

forecasting energy consumption in scenarios where 

explainability, speed, and stability are prioritized.

 

 

Performance of the Ensemble Model 
 

 
Figure 9. Performance Metrics of Ensemble Model 

 
 

 

The ensemble model, illustrated in Figure 9, 

was constructed by averaging the predictions of the 

deep neural network (DNN) and the XGBoost 

regressor. This hybrid approach yielded the 

following evaluation metrics on the test dataset: a 

Mean Absolute Error (MAE) of 562.92, a Root Mean 

Squared Error (RMSE) of 706.22, and an R² score of 

0.812. 

These results demonstrate that the ensemble 

model outperformed the XGBoost regressor and 

approached the accuracy of the DNN, achieving a 

favorable compromise between predictive precision 

and model robustness. The R² value of 81.2% 

indicates that the model effectively captured the 

variance in household energy consumption while 

mitigating individual model biases. This confirms 

the effectiveness of ensemble learning in enhancing 

forecast reliability and generalization, particularly in 

scenarios involving heterogeneous feature sets and 

complex consumption behaviors. 
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Feature Analysis 

The feature analysis revealed that 

temperature, appliance load, and household size 

were the top influencers of energy use, aligning with 

literature emphasizing the contextual value of 

environmental and behavioral variables. 

Discussion 

The results of this study demonstrate the 

effectiveness of AI models in forecasting household 

energy consumption using structured residential data 

from Negros Occidental. Among the three predictive 

approaches evaluated, the deep neural network 

(DNN) achieved the highest accuracy, with a mean 

absolute error (MAE) of 557.82 and an R² score of 

0.815. These metrics indicate the model’s strong 

capacity to capture nonlinear patterns in 

consumption data, making it especially suitable for 

forecasting scenarios where usage behavior is 

influenced by multiple interacting variables such as 

climate, household size, and appliance load. 

Although the XGBoost regressor produced a 

slightly higher MAE of 601.07, it still maintained a 

commendable R² score of 0.779, reflecting its 

strength in handling tabular data and modeling 

structured feature relationships. Its relatively stable 

performance aligns with existing literature that 

highlights XGBoost's efficiency and reliability for 

predictive tasks involving well-structured inputs 

(Krishnamurthy et al., 2024). 

The ensemble model, which combined 

predictions from both the DNN and XGBoost 

through simple averaging, achieved an MAE of 

562.92 and an R² score of 0.812. These results 

indicate that the ensemble provided a balanced 

forecast with improved robustness by offsetting the 

individual limitations of each model. The slight 

performance gain, particularly in terms of 

generalization, supports previous findings by 

Neubauer et al. (2025), who emphasized the 

advantages of hybrid approaches in residential 

energy forecasting. 

Moreover, the models' consistent validation 

performance and convergence behavior throughout 

the training process confirm their stability and 

robustness. The inclusion of features such as month-

based seasonality, average temperature, and 

appliance type enriched the contextual understanding 

of energy consumption patterns. The model’s 

structure also supports the potential inclusion of solar 

energy variables, making it adaptable for future 

studies focused on renewable integration in 

household energy systems. 

Recommendations 

Based on the findings of this study, the 

following recommendations are proposed to improve 

the application, scalability, and future development 

of AI-assisted energy forecasting models in 

residential settings: 

1. Adopt AI Forecasting in Households. 

Local government units and energy 

providers in Negros Occidental 

should consider supporting the 

deployment of AI-based forecasting 

tools in households to promote 

efficient electricity usage and reduce 

energy costs. 

2. Incorporate Renewable Energy 

Integration. Future implementations 

of the model should include more 

detailed solar power data to enhance 

the accuracy and applicability of 

forecasts in renewable energy-

enabled homes. 

3. Expand Data Collection. Increasing 

the number of participating 

households and including more 

granular smart meter data (e.g., 

hourly usage) will further improve 

model accuracy and generalizability. 

4. Apply in Other Regions. The model 

architecture should be tested in other 

provinces or regions in the 

Philippines to evaluate its scalability 

and adaptability in varied residential 

settings. 

5. Enhance Model Interpretability. 

Future studies may integrate 

explainable AI techniques (e.g., 
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SHAP values) to help end-users 

understand how different features 

affect their energy consumption 

predictions. 
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