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Abstract Original Research Article

Accurate energy forecasting in residential areas is key to promoting sustainability, reducing energy costs, and
enhancing grid reliability. This study presents an Al-assisted energy consumption forecasting model designed
specifically for households in Negros Occidental, Philippines. Leveraging an ensemble model that combines
a Deep Neural Network (DNN) and an XGBoost regressor, the research aims to generate precise energy
forecasts using variables such as climate, household size, and appliance usage. The model utilizes historical
energy data, smart meter inputs, and environmental conditions to train and evaluate performance. By
emphasizing both accuracy and explainability, the hybrid model addresses the need for user-friendly energy
solutions tailored to socio-environmental contexts in developing regions. Additionally, the study explores the
relevance of localized forecasting in the face of frequent brownouts and the growing adoption of solar
technologies. The results demonstrate the superiority of the ensemble approach over individual models,
validating the method’s applicability in real-world scenarios. This research contributes a scalable, transparent,
and adaptable solution that aligns with national sustainability goals and encourages household-level
participation in energy management.
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Introduction statistical methods by learning complex relationships

Accurate forecasting of household energy in large-scale consumption data.

consumption is critical to achieving energy Short-term load forecasting (STLF) plays a
efficiency, reducing electricity costs, and supporting vital role in residential energy management, enabling
grid stability in residential sectors. With global households and utility providers to plan more
energy systems transitioning toward intelligent effectively. G. R., Sreedharan, and Binoy (2025)
automation, artificial intelligence (Al) has emerged demonstrated that hybrid approaches combining
as a transformative tool in predicting power demand artificial neural networks with ensemble learning
patterns.  According to (Eddaoudi, Aaraba, techniques significantly outperform standalone
Boudmena, Elghazi, and Rahmani (2024), Al models models in demand response scenarios. This finding
provide enhanced accuracy compared to traditional underscores the advantage of integrated model
(o) Citation: Vistar, J. J., Lascuiia, L. M. B., Tadia, J. A., Il, & Soberano, K. T. (2025). Al-Assisted Energy
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architectures when forecasting energy usage under
varying residential conditions.

Real-time energy forecasting has also
advanced through the use of bio-inspired and
bidirectional deep learning techniques. Cheng and
Vu (2024) developed a bidirectional long short-term
memory (BILSTM) model capable of capturing
forward and backward temporal dependencies in
electricity usage, leading to improved forecast
precision in smart homes. Complementing this,
(Zhao, Zhao, Chen, Alsenani, Alotaibi, and
Abuhussain (2025) explored enhanced recurrent
neural networks (RNNs) for simultaneous
forecasting of residential energy consumption and
price behavior, emphasizing the economic value of
intelligent forecasting systems.

Given the high solar potential in Southeast
Asian countries, especially the Philippines,
integrating renewable energy considerations into
load forecasting is crucial. Mallala, Ahmed, Mallala,
Pamidi, Faruque, and Reddy (2025) developed a
model that forecasts global sustainable energy output
using random forest algorithms, highlighting the
viability of data-driven approaches for renewables in
resource-rich regions. Furthermore, Abu-Salih, Abu-
Salih, Marrable, Wongthongtham, Liu, and Morrison
(2022) demonstrated how smart meter data, when fed
into deep learning models, could accurately forecast
both consumption and solar generation in rooftop
photovoltaic (PV) systems.

Beyond temporal trends, spatial and
behavioral dimensions are increasingly included in
modeling frameworks. Peng, Kimmig, Wang, Niu,
Liu, Tao, and Ovtcharova (2024)proposed a spatio-
temporal model that captures user behavior patterns
across both time and location, improving prediction
accuracy for smart environments. Hasan (2025)also
designed an loT-based forecasting model using
improved long short-term  memory (LSTM),
emphasizing the importance of real-time sensor data
in capturing dynamic energy usage trends at the
household level.

Explainability has also become a central
theme in recent literature. Krishnamurthy, Kumar,
and Choudhary (2024) stressed that Al models used
for energy forecasting should balance predictive

accuracy with transparency to foster trust and
usability among end-users. Moreover, privacy and
data security are growing concerns in the energy
sector. (Manzoor et al., 2024) explored centralized
and decentralized federated learning models for load
forecasting, advocating for decentralized systems
that enhance privacy and adversarial robustness in
smart buildings.

This study responds to these findings by
developing an ensemble model combining a deep
neural network (DNN) and XGBoost regressor to
forecast household energy consumption in Negros
Occidental, Philippines. By incorporating climate
conditions, household size, appliance usage, and
temporal factors, the model aims to generate reliable
consumption forecasts while ensuring model
interpretability and adaptability. This Al-assisted
forecasting approach supports informed energy
decisions, sustainable behavior, and future
integration with renewable energy systems in
residential settings.

Objectives of the Study

The objective of the study is to develop and evaluate
an Al-assisted ensemble forecasting model for
residential energy consumption in Negros Occidental
using machine learning techniques with these
following features:

1. To design and develop an Al-assisted
ensemble model for household energy
forecasting using DNN and XGBoost.

2. To train the model using residential data from
Negros Occidental, including climate,
appliance, and demographic features.

3. Toevaluate the performance of the individual
and combined models in terms of predictive
accuracy and generalization.

4. To identify key influencing factors on
household energy use based on model
outputs.

Significance of the Study

This study makes a significant contribution to
sustainable household energy management by
developing a reliable, Al-assisted forecasting model
specifically designed for the socio-environmental
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context of Negros Occidental. Leveraging the
combined strengths of deep learning and gradient-
boosted decision tree algorithms, the model captures
both complex temporal patterns and structured
feature relationships in residential energy data. This
hybrid architecture not only enhances forecast
accuracy but also provides practical, real-time
insights that empower households to monitor and
adjust their electricity usage proactively.

A notable innovation of this research is its
integration of explainable Al components, which
allow users and stakeholders to understand how
predictions are generated and which variables most
influence consumption trends. This transparency
builds user confidence and encourages behavioral
change, making the technology more accessible to
non-technical users and increasing the likelihood of
its adoption in community energy programs.

Furthermore, the model’s design anticipates
the growing integration of distributed energy
resources, such as rooftop solar systems, in
Philippine homes. By enabling better planning and
self-regulation of power usage, the system supports
household-level ~ contributions  to  national
sustainability targets. It also offers a scalable and
adaptable framework that can be replicated in other
regions facing similar challenges, such as fluctuating
grid reliability, uneven access to smart meters, and
increasing energy Ccosts.

In essence, the study bridges the gap between
advanced Al techniques and grassroots energy
efficiency efforts, offering a forward-looking tool
that aligns with both technological trends and policy
goals. Its emphasis on localized, explainable, and
renewable-aware forecasting provides a replicable
model for energy-conscious living in developing
communities.

Scope and Limitations

The scope of this research is confined to
residential energy consumption forecasting within
selected households in Negros Occidental. The study
utilizes historical consumption records, smart meter-
derived features, and environmental parameters to
train an ensemble model composed of a deep neural
network and XGBoost regressor. While the system is

optimized for household-level predictions, it does
not address energy use in industrial, commercial, or
agricultural sectors. Limitations include potential
data imbalance, restricted access to high-resolution
smart meter data, and dependency on the accuracy of
external environmental datasets. Additionally, the
model performance may vary based on sensor
availability and internet connectivity in rural areas.

Study Setting

This research was conducted in Negros
Occidental, a province located in the Western
Visayas region of the Philippines, known for its
agricultural economy, emerging urban centers, and
vibrant local communities. The province is home to
a wide range of residential settings—from densely
populated urban barangays to remote rural
households—each exhibiting unique patterns of
electricity usage. These patterns are shaped by
various factors including income levels, appliance
ownership, household size, and climate variability.
Additionally, frequent brownouts and unstable grid
infrastructure in some areas highlight the urgent need
for predictive tools that can assist in managing
energy use more efficiently.

The diversity of residential contexts in
Negros Occidental offers an ideal testbed for
evaluating the performance and adaptability of Al-
based energy forecasting systems. The study’s
localized focus ensures that the forecasting model is
trained on real-world data reflective of the challenges
and consumption behaviors specific to the region.
Furthermore, the province's abundant solar
irradiance presents a compelling case for
incorporating solar energy data into forecasting
models, making it a strategic site for exploring how
Al can support the transition to cleaner, decentralized
power systems. By situating the research in Negros
Occidental, the study not only enhances its practical
relevance but also contributes to the growing body of
work supporting regional energy innovation in the
Philippines.

Materials and Methods

This study employed a supervised machine
learning approach to forecast household energy
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consumption using an ensemble model composed of
a deep neural network (DNN) and an XGBoost
regressor. The ensemble strategy was chosen to
combine the strengths of both models: the DNN's
ability to capture complex, nonlinear patterns in
time-series data and XGBoost's efficiency in
handling structured, tabular features through
gradient-boosted decision trees. This complementary
integration aimed to improve forecast stability and
accuracy across diverse household profiles.

The dataset used in this research consisted of
historical electricity consumption records collected
from various households in Negros Occidental. It
included not only energy usage data in kilowatt-
hours (kwh) but also auxiliary features such as
average monthly temperature, household size,
number of continuous and non-continuous
appliances, and floor area in square meters. These

Square Number of Average Avg Continuous

Month Meters Occupants Temperature Load (W)

July 209 309 7200

May 132 306 8800
Movember 17 28.6 4000

March 179 343 2400

B W N = O
T N )

June 159 29.2 1600

Avg Non- Energy
Continuous Load Consumption

features were selected based on their known
influence on residential electricity demand and their
availability from local sources. The inclusion of
weather-related and demographic variables allowed
the model to account for seasonal trends and
lifestyle-related consumption behaviors.

Data preprocessing involved cleaning and
normalization of numerical features, one-hot
encoding of categorical variables (e.g., month), and
partitioning into training and testing subsets. Both
models in the ensemble were trained on the same
processed input features, and their predictions were
averaged to generate the final output. This machine
learning pipeline was implemented using Python
with libraries such as TensorFlow, XGBoost, and
Pandas, ensuring a reproducible and scalable
modeling process..

Conti Non-Conti Total
Appliances Appliances Appliances

(w) (kWh)
12000 3949.73 10 19
14400 4027.70 1 12 23

9
1

3600 1886.42 5 3 8
3600 931.24 3
2

3600 935.38

Figure 1. Household Energy Consumption Dataset

The dataset used in this study, as illustrated
in Figure 1, was loaded using the Python
programming language and the pandas library for
data manipulation. It contains detailed household
energy consumption data from Negros Occidental,
with each record comprising features such as the
month, total floor area (in square meters), number of
household occupants, average monthly temperature,
and average appliance load in watts for both
continuous and non-continuous devices. The dataset
also includes the total number of appliances per
category and the corresponding energy consumption
measured in kilowatt-hours (kWh).

To verify the structure and consistency of the
data, the head() function was used to inspect the first
five rows. This preliminary check confirmed that the
dataset was properly formatted and ready for
preprocessing. In preparation for model development
and visualization, additional libraries were imported,
including tensorflow for building the deep learning
model and matplotlib.pyplot for plotting training
metrics and results. This structured data served as the
foundation for training and evaluating the Al-
assisted forecasting models.
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Data Preprocessing

X_train.loc[8

Month July
Square Meters 288
Number of Occupants 5
Average Temperature 30.9
Avg Continuous Load (W) 72688

Avg Non-Continucus Load (W) 12000
Continuous Appliances 9
Non-Continuous Appliances 18
Total Appliances 19
Name: 8, dtype: object

X_train_normal[e

array([8.85479452, 1. , ©.58333333, 0.66666667, @.75

®.66666667, .75 , 1. , 8. , a.
8. , 6. , a. , e. , a.
8. , 6. , @. , 8. 1)

X_train.shape, X test.shape, y train.shape, y test.shape

((8ee, 9), (200, 9), (80a,), (200,))

X_train_normal.shape, X_test_normal.shape, y_train.shape, y_test.shape

((80@, 19), (200, 19), (8908,), (200,))

Figure 2. Data preprocessing

Data preprocessing, as illustrated in Figure 2,
involved several steps to prepare the dataset for
model training. Numerical features—such as floor
area, average temperature, and appliance load
values—were normalized using the MinMaxScaler
to ensure that all values were scaled between 0 and
1, preventing any single feature from dominating the
learning process. Categorical variables, particularly
the 'Month' attribute, were encoded using one-hot
encoding, allowing the models to treat each month as
an independent input without implying any ordinal
relationship.

The dataset was then partitioned into training
and testing sets following an 80:20 ratio, ensuring
that the models could be trained effectively while
retaining a portion of the data for unbiased
evaluation. To streamline preprocessing and
maintain consistency across both the DNN and
XGBoost models, a ColumnTransformer was used to
apply appropriate transformations to specific
columns in a single pipeline. This approach ensured
that both models received inputs with the same
structure and scale, improving training efficiency
and comparability of results.

Model Creation

The  ensemble model architecture
implemented in this study was composed of two
distinct but complementary components designed to
leverage the strengths of both deep learning and
gradient boosting techniques:

1. The first component was a Deep Neural
Network (DNN) developed using the
TensorFlow/Keras framework. The DNN
consisted of multiple fully connected
hidden layers, each employing the ReLU
(Rectified Linear Unit) activation
function to introduce non-linearity into
the model. To mitigate overfitting,
dropout regularization was applied
between layers, randomly deactivating a
fraction of neurons during training. This
neural  network was  specifically
structured to capture complex and
nonlinear relationships among input
features, such as the interactions between

BY NG
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temperature, appliance usage, and
household size.

2. The second component was an XGBoost
regressor, a tree-based ensemble learning
algorithm known for its high performance
on structured, tabular data. The model
was configured using  optimized
hyperparameters, including a learning
rate, number of estimators, maximum tree
depth, and subsampling ratio. XGBoost

Model: "sequential_4"

effectively handled feature importance
and captured interactions among
variables with minimal preprocessing.

Together, these two models formed an ensemble
architecture where predictions from both were
averaged to produce the final output. This hybrid
strategy enhanced overall model robustness by
balancing the high-capacity learning of the DNN
with the feature interpretability and stability of
XGBoost.

Layer (type) Output Shape

Param #

dense_208 (Dense) 5 1024)

20,480

dropout (Dropout) 5 1024)

0

dense_21 (Dense) , 512)

524,800

dropout_1 (Dropout) , 512)

131,328

dropout_2 (Dropout) , 256)

dense_23 (Dense) , 128)

32,896

dropout_3 (Dropout) , 128)

(
(
(
(
dense 22 (Dense) (lone, 256)
(
(
(
(

dense_24 (Dense) , 1)

129

Total params: 789,633 (2.71 MB)

Trainable params: 709,633 (2.71 MB)

Non-trainable params: @ (©.8@ B)

Figure 3. Deep Neural Network Architecture

The deep neural network (DNN) architecture
used in this study, as shown in Figure 3, was
implemented using the Keras Sequential API. The
architecture consists of five fully connected (Dense)
layers with decreasing output dimensions of 1024,
512, 256, 128, and 1, respectively. Between each of
the first four Dense layers, Dropout layers were
inserted to randomly deactivate neurons during
training and thus reduce overfitting. ReLU (Rectified
Linear Unit) activation functions were applied to all
hidden layers to introduce non-linearity and

accelerate training convergence. The final layer uses
a linear activation to output a single numerical value
representing the predicted energy consumption in
kilowatt-hours (kWh). In total, the model comprises
709,633 trainable parameters, with each layer
designed to gradually reduce the feature
dimensionality while learning complex interactions
within the input data.

The second component of the ensemble is the
XGBoost regressor, a high-performance, gradient-
boosted decision tree model optimized for tabular
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data. The model was initialized with the following
hyperparameters:

e n_estimators = 16,000
e learning_rate = 0.05

e max_depth=5

e subsample =0.8

e colsample_bytree = 0.8
e random_state = 42

These parameters controlled the number of
boosting rounds, the pace at which the model learns,
and the proportion of rows and features sampled at
each iteration. This configuration was selected to
balance model complexity and generalization,
allowing XGBoost to effectively capture feature
interactions without overfitting.

Together, the DNN and XGBoost models
formed a robust ensemble architecture capable of
learning from both structured features and high-
dimensional representations, improving overall
forecasting performance for household energy
consumption.

Callbacks

During the training phase of the deep neural
network, two callback functions were implemented
to enhance performance, stabilize learning, and
prevent overfitting:

e EarlyStopping was employed to monitor the
mean absolute error (MAE) on the validation
set. Training was automatically halted if no
improvement in MAE was observed for 10
consecutive epochs. This mechanism ensures
that the model does not over-train on the data,
thus minimizing the risk of overfitting and
reducing unnecessary computational time.
When triggered, the callback restored the
model weights from the epoch with the best
recorded validation performance.

e ReduceLROnPlateau  was  used to
dynamically adjust the learning rate during
training. Specifically, if the validation loss
did not improve for 5 consecutive epochs, the
learning rate was reduced by a factor of 0.2,

down to a minimum threshold of 1e-6. This
gradual reduction in learning rate allowed the
model to make finer adjustments during later
training epochs, especially as it approached a
local or global minimum.

Both callbacks were implemented using the
tf_keras.callbacks module, ensuring efficient and
adaptive training behavior. These training strategies
contributed to faster convergence and improved
generalization of the deep learning model on unseen
household energy consumption data.

Results
The ensemble model

This section presents the outcomes of the Al-
assisted energy consumption forecasting models
trained on household-level data from Negros
Occidental. The study evaluated the performance of
three predictive setups: the deep neural network
(DNN), the XGBoost regressor, and their ensemble
combination. Each model was assessed using
standard regression metrics, including mean absolute
error (MAE), root mean squared error (RMSE), and
the coefficient of determination (R2), to provide a
comprehensive view of predictive accuracy and
generalization capability.

The results encompass model training
dynamics, final evaluation scores on the test dataset,
and comparative analysis of performance across the
three modeling approaches. Training behavior—
such as early stopping criteria and learning rate
adjustments—is also discussed to contextualize
convergence and stability. The findings demonstrate
the individual strengths of both the DNN and
XGBoost models while highlighting the enhanced
reliability and reduced prediction error achieved
through the ensemble method. Overall, this section
supports the hypothesis that hybrid Al models
improve the accuracy and consistency of household
energy consumption forecasts in real-world settings.

Training Performance of the Deep Neural
Network

The deep neural network as depicted in
Figure 4 was trained for a maximum of 1000 epochs
but terminated early at epoch 26 due to the
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EarlyStopping callback. The model achieved its
lowest validation mean absolute error (val_mae) of

—— O
Epoch 1%/16e@
25/25 ———————————
Epoch 2@/1eee
25/25 ————————————
Epoch 21/1eee
25/25 —————m——————
Epoch 22/1eee
25/25 ——————————
Epoch 23/1@ee
25/25 —————m——————
Epoch 24/1eee
25/25 —————————
Epoch 25/1@ee
25/25 ———————————
Epoch 26/1008
25/25

s 8ms/step - loss: 679.3851 - mae:

B@s 8ms/step - loss: 639.7938 - mae

@s 8ms/step - loss: 679.2826 - mae:

O@s 8ms/step - loss: 66@.9512 - mae:

@5 8ms/step - loss: 665.4121 - mae:

@s 7ms/step - loss: 681.3026 - mae:

@5 7ms/step - loss: 656.201@ - mae:

@s 13ms/step - loss: 653.6116 - mae:

67%.3851 -

632.793@ -

679.2826 -

660.9512 -

653.6116

665.4121 -

681.3826 -

656.201@ -

approximately 537.02 at epoch 16, which was

automatically restored as the final model.

val_loss:
val_loss:
val_loss:

val_loss:

- val_loss:

val_loss:
val_loss:

val_loss:

544.3058 -

572.31@2

574.119@ -

537.8187

548.3271 -

558.6114 -

551.7253

568.1296 -

val_mae:

- val_mae:

val_mae:

- val_mae:

val_mae:

val_mae:

- val_mae:

val_mae:

544.3058

572.3102

574.1198

537.8187

548.3271

558.6114

551.7253

56@.1296

Epoch 26: early stopping
Restoring model weights from the end of the best epoch: 16.

Figure 4. Training Performance of the Deep Neural Network

During the initial training phase of the deep
neural network (DNN), both training and validation
mean absolute error (MAE) values exhibited a steep
decline, indicating that the model was learning
effectively from the input data. Specifically, the
training MAE dropped from 3704.49 in epoch 1 to
629.54 by epoch 16, while the validation MAE
improved from 2838.26 to 537.02 over the same
period. This consistent reduction across both datasets
suggests that the model was not only fitting well to
the training data but also generalizing effectively to
unseen samples.

Final Model Evaluation

validation model 1 = electric_model_1.evaluate(X_test_normal, y_test)

7/7 ————————————— 0s 3ms/step - loss: 575.8734 - mae: 575.8784

The training process was governed by the
EarlyStopping callback, which monitored the
validation MAE and halted training when no further
improvement was observed over 10 consecutive
epochs. In this case, training ceased at epoch 26, and
the model weights were restored to those from epoch
16, where the lowest validation MAE was recorded.
This early stopping mechanism played a critical role
in preventing overfitting and ensuring that the model
maintained optimal performance based on validation
accuracy.

Figure 5. Model Evaluation

After completing the training phase, the deep
neural network (DNN) was evaluated on the test
dataset, as illustrated in Figure 5. The model
achieved a mean absolute error (MAE) of 575.08,
reflecting the average difference between the
predicted and actual household energy consumption
values in kilowatt-hours. This relatively low MAE

demonstrates the model’s strong ability to produce
accurate forecasts on previously unseen data.

The result also validates the effectiveness of
the EarlyStopping strategy used during training.
Despite halting the process early at epoch 26, the
model successfully retained the optimal weights
from epoch 16, confirming that it maintained its
generalization performance. The close alignment
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between the validation and test MAE values further
indicates that the model did not overfit the training
data and was capable of reliably predicting energy

Training and Validation Loss Curve

3500 1 — loss
mae
— val_loss
3000 — val_mae
25001
%
2 2000
1500 A
1000
500 o
0 5 10 15 20

epochs

usage across a variety of household profiles in
Negros Occidental.

Figure 6. Training and Validation Loss Curve

Figure 6 displays the training and validation
loss curves across 26 epochs of model training. Both
the mean absolute error (MAE) and loss values
showed a sharp decline during the early epochs,
reflecting rapid learning and effective parameter
updates. Notably, by approximately epoch 5, the rate
of improvement began to slow, and the curves
gradually leveled off. From that point onward, only
minor fluctuations were observed in both training
and validation metrics until the EarlyStopping
callback halted the training process.

The ensemble model achieved superior performance

Mean Absolute Error (MAE): 557.8175732421874
Mean Squared Error (MSE): 498873.99738182605

Root Mean Squared Error (RMSE): 7€@.5248@857133541
R™2 Score: ©.81485112239444913

Throughout the training phase, the gap
between the training and validation curves remained
consistently narrow, indicating that the model
generalized well and avoided overfitting. The
parallel behavior of the two curves suggests that the
model was not simply memorizing the training data
but learning meaningful patterns applicable to
unseen inputs. This visual confirmation of balanced
learning supports the quantitative results and further
validates the robustness of the model design and
training strategy.

Figure 7. Performance Metrics of the Deep Neural Network

The performance of the deep neural network
(DNN) on the test dataset is summarized in Figure 7,
using standard evaluation metrics. The model

achieved a Mean Absolute Error (MAE) of 557.82, a
Mean Squared Error (MSE) of 490,783.99, and a
Root Mean Squared Error (RMSE) of 700.62. In
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addition, the coefficient of determination (R2 score)
was recorded at 0.815, indicating that the model was
able to explain approximately 81.5% of the variance
in household energy consumption.

These results confirm that the DNN was
effective in capturing the complex, nonlinear
relationships inherent in the residential energy

Performance of the XGBoost Regressor

XGBoost MAE: 681.8668808258780
XGBoost RMSE: 765.6886077222805
XGBoost R"2: @.7788668498831346

dataset. The relatively low MAE and RMSE values
suggest that prediction errors remained consistently
small across the test samples, while the high R2 score
reflects strong model generalization. Collectively,
these metrics demonstrate that the DNN provided
accurate and reliable forecasts, making it a suitable
candidate for practical energy consumption
prediction in real-world household settings.

Figure 8. Performance Metrics of the XGBoost Regressor

The XGBoost regressor produced the
following performance metrics on the test dataset, as
illustrated in Figure 8: a Mean Absolute Error (MAE)
of 601.07, a Root Mean Squared Error (RMSE) of
765.69, and an R2 score of 0.779. These results
indicate that the model successfully explained
approximately 77.9% of the variance in household
energy consumption.

Although the XGBoost model performed
slightly below the deep neural network (DNN) in

Performance of the Ensemble Model

Ensemble MAE: 562.9162222412189
Ensemble RMSE: 786.215740836111%
Ensemble R"2: ©.8118839550099438

terms of accuracy, it still demonstrated solid
generalization capabilities and predictive strength.
The relatively low error values and strong R2 score
confirm that XGBoost effectively learned the
relationships within the structured input data. Its
performance reinforces the model’s suitability for
forecasting energy consumption in scenarios where
explainability, speed, and stability are prioritized.

Figure 9. Performance Metrics of Ensemble Model

The ensemble model, illustrated in Figure 9,
was constructed by averaging the predictions of the
deep neural network (DNN) and the XGBoost
regressor. This hybrid approach vyielded the
following evaluation metrics on the test dataset: a
Mean Absolute Error (MAE) of 562.92, a Root Mean
Squared Error (RMSE) of 706.22, and an R2 score of
0.812.

These results demonstrate that the ensemble
model outperformed the XGBoost regressor and

approached the accuracy of the DNN, achieving a
favorable compromise between predictive precision
and model robustness. The R? value of 81.2%
indicates that the model effectively captured the
variance in household energy consumption while
mitigating individual model biases. This confirms
the effectiveness of ensemble learning in enhancing
forecast reliability and generalization, particularly in
scenarios involving heterogeneous feature sets and
complex consumption behaviors.
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Feature Analysis

The feature analysis revealed that
temperature, appliance load, and household size
were the top influencers of energy use, aligning with
literature emphasizing the contextual value of
environmental and behavioral variables.

Discussion

The results of this study demonstrate the
effectiveness of Al models in forecasting household
energy consumption using structured residential data
from Negros Occidental. Among the three predictive
approaches evaluated, the deep neural network
(DNN) achieved the highest accuracy, with a mean
absolute error (MAE) of 557.82 and an R2 score of
0.815. These metrics indicate the model’s strong
capacity to capture nonlinear patterns in
consumption data, making it especially suitable for
forecasting scenarios where usage behavior is
influenced by multiple interacting variables such as
climate, household size, and appliance load.

Although the XGBoost regressor produced a
slightly higher MAE of 601.07, it still maintained a
commendable R2 score of 0.779, reflecting its
strength in handling tabular data and modeling
structured feature relationships. Its relatively stable
performance aligns with existing literature that
highlights XGBoost's efficiency and reliability for
predictive tasks involving well-structured inputs
(Krishnamurthy et al., 2024).

The ensemble model, which combined
predictions from both the DNN and XGBoost
through simple averaging, achieved an MAE of
562.92 and an R2 score of 0.812. These results
indicate that the ensemble provided a balanced
forecast with improved robustness by offsetting the
individual limitations of each model. The slight
performance gain, particularly in terms of
generalization, supports previous findings by
Neubauer et al. (2025), who emphasized the
advantages of hybrid approaches in residential
energy forecasting.

Moreover, the models' consistent validation
performance and convergence behavior throughout
the training process confirm their stability and

robustness. The inclusion of features such as month-
based seasonality, average temperature, and
appliance type enriched the contextual understanding
of energy consumption patterns. The model’s
structure also supports the potential inclusion of solar
energy variables, making it adaptable for future
studies focused on renewable integration in
household energy systems.

Recommendations

Based on the findings of this study, the
following recommendations are proposed to improve
the application, scalability, and future development
of Al-assisted energy forecasting models in
residential settings:

1. Adopt Al Forecasting in Households.
Local government units and energy
providers in  Negros Occidental
should consider supporting the
deployment of Al-based forecasting
tools in households to promote
efficient electricity usage and reduce
energy costs.

2. Incorporate  Renewable  Energy
Integration. Future implementations
of the model should include more
detailed solar power data to enhance
the accuracy and applicability of
forecasts in renewable energy-
enabled homes.

3. Expand Data Collection. Increasing
the  number of  participating
households and including more
granular smart meter data (e.g.,
hourly usage) will further improve
model accuracy and generalizability.

4. Apply in Other Regions. The model
architecture should be tested in other
provinces or regions in the
Philippines to evaluate its scalability
and adaptability in varied residential
settings.

5. Enhance Model Interpretability.
Future studies may integrate
explainable Al techniques (e.g.,
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SHAP values) to help end-users
understand how different features
affect their energy consumption
predictions.
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