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1. INTRODUCTION 

Biological snakes represent nature's most 

remarkable locomotion achievements, navigating 

complex terrain with minimal energy expenditure. 

Unlike wheeled and legged robots constrained by 

rigid morphologies, snakes exploit continuous 

body deformation, anisotropic friction interactions, 

and distributed neural control to traverse 

environments from sandy deserts to rocky 

mountains to underground tunnels (Seeja et al., 

2022). This capability emerges from three 

integrated elements compliant musculoskeletal 

systems enabling continuous deformability, 

distributed contact exploiting environmental 

friction as propulsion aids, and spinal Central 

Pattern Generators distributed neural circuits 

capable of autonomous rhythm generation. 

Engineering snake robot platforms inspired by 

these biological principles offers unprecedented 

capability for deployment where conventional 

robots fail. 

Practical applications drive snake robot 

development. Search and rescue requires 

navigation through collapsed structures following 

disasters where wheels and legs prove useless. 

Infrastructure inspection demands traversing 

confined pipelines and utility networks in industrial 

facilities and nuclear plants. Environmental 

monitoring requires exploring cave systems and 

underwater environments inaccessible to 

conventional platforms. Medical applications 

including minimally invasive surgery require 

manipulation within constrained anatomical 

spaces. Industrial platforms including the ACM-R 

series and Kulko demonstrate commercial maturity 

with operational systems deployed in real-world 

missions (P. Ngamkajornwiwat & N. Pothita, 

2024). 
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Snake robot control presents distinct challenges 

absent in traditional robotics. High kinematic 

dimensionality 30+ degrees of freedom makes 

conventional inverse kinematics intractable. 

Distributed environmental contact creates complex 

dynamics; the robot simultaneously interacts with 

terrain through multiple body segments 

experiencing unique contact forces and friction. 

Environmental adaptation is essential; locomotion 

performance depends critically on friction 

coefficients, obstacle distributions, and terrain 

compliance. Real-time computational constraints 

on embedded microcontrollers requiring execution 

within 10-100 milliseconds preclude complex 

controllers. These constraints necessitate 

alternative paradigms exploiting inherent 

locomotion structure rather than centralized 

trajectory planning. 

Two complementary control paradigms address 

these constraints. Central Pattern Generator-based 

approaches leverage biological inspiration 

(Campanaro et al., 2021), generating locomotion 

through distributed oscillatory circuits requiring 

minimal tuning and executing in real-time on 

resource-constrained systems. Learning-based 

approaches enable automatic gait discovery 

through reinforcement learning and evolutionary 

algorithms, achieving superior performance when 

computational resources are available (Liu et al., 

2025). Hybrid architectures combining CPG 

structures with learned parameters represent 

emerging best practice (Liu et al., 2023a), 

balancing biological plausibility with adaptive 

capability while maintaining real-time feasibility. 

This review synthesizes research across CPG-

based and learning-based methodologies, 

performance analysis across platforms and terrains, 

critical research gaps, and future directions. We 

examine mathematical foundations (Matsuoka and 

Hopf oscillators), parameter optimization (genetic 

algorithms, particle swarm optimization), 

reinforcement learning (PPO, DDPG), and hybrid 

integration. Specific focus addresses sim-to-real 

transfer challenges, energy efficiency limitations, 

and standardization requirements essential for 

enabling practical autonomous snake robot 

systems. 

2. BACKGROUND: SNAKE LOCOMOTION 

PRINCIPLES 

2.1 Snake Robot Platforms and Architectures 

Contemporary snake robot platforms exhibit 

diverse architectures reflecting design philosophy 

and application requirements (P. 

Ngamkajornwiwat & N. Pothita, 2024). As shown 

in Figure 1 modular rigid platforms like the ACM-

R series employ 2 degrees of freedom per segment 

enabling roll and yaw motion through servo-

actuated joints. Recent soft robot designs 

emphasize pneumatic or hydraulic actuators 

embedded in compliant materials (Lu et al., 2024), 

offering compliance for safe interaction and 

continuous deformability enabling passage through 

spaces far smaller than the robot's relaxed 

configuration. Hybrid platforms integrate rigid 

skeletal structures with soft actuators, combining 

structural support and sensor mounting with 

compliant deformation. Wheel-equipped platforms 

exploit anisotropic friction by mounting passive 

wheels perpendicular to joint axes (Fukuoka et al., 

2023), effectively decoupling lateral and forward 

motion to reduce energy requirements on terrestrial 

surfaces. These diverse platforms share common 

control challenges: high kinematic dimensionality, 

distributed environmental contact, and real-time 

computational constraints on embedded systems 

(Seeja et al., 2022).
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Figure 1. Detailed view of modular snake robot mechanical design showing segmental structure with 

articulated joints, actuators, and sensor integration enabling flexible locomotion across diverse terrains.

 

2.2 Kinematic and Dynamic Modeling 

The fundamental serpenoid equation describes snake undulation: 

y=B sin (
2πx

λ
+

2πt

T
+ϵ) (1) 

 

Where B  is amplitude, λ  is wavelength typically 

0.8-1.2 body lengths, T is period corresponding to 

undulation frequency, t   is time, and ϵ  is phase 

offset. Equation 1 Serpenoid curve equation 

specifies the spatial-temporal wave pattern that 

forms the basis for CPG-based controllers (Liu, 

Gasoto, Onal, et al., 2020). This spatial-temporal 

wave pattern specification forms the basis for 

CPG-based controllers. The serpenoid curve 

describes the trajectory that each point along the 

snake's body traces during locomotion. The 

wavelength determines how many body waves are 

present simultaneously shorter wavelengths create 

faster, more frequent undulations while longer 

wavelengths produce slower, more powerful 

movements. The phase offset enables directional 

control; asymmetric phase relationships between 

left and right body sides steer the robot. 

Joint angles are directly modulated by CPG outputs 

through:

 

θi(t)=A⋅si(t) (2) 

 

Where A is amplitude scaling factor determining 

maximum joint deflection, si is CPG firing rate for 

segment i ranging between -1 and 1, and θi is the 

resulting joint angle command in radians. 

Equation 2 CPG to joint angle mapping enables 

the remarkable simplicity of CPG-based 

implementations no complex inverse kinematics 

computation is required. The CPG output naturally 

encodes both the magnitude (through firing rate) 

and temporal dynamics necessary for smooth 

locomotion. 

Dynamic models incorporating acceleration, force 

interactions, and contact mechanics are governed 

by (Park et al., 2020):
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M(q)q̈+C(q,q̇)q̇+G(q)=τ+Jc
TFc (3) 

 

Where M(q)  is the n×n  mass matrix, C  captures 

Coriolis and centripetal effects, G  represents 

gravitational forces, τ  are applied joint torques 

from actuators, Jc  is the m×n  contact Jacobian 

relating contact forces to joint torques, and Fc are 

contact forces including friction and normal forces. 

Equation 3 Lagrangian dynamics model 
becomes critical when the robot interacts with 

obstacles, terrain irregularities, or confined spaces. 

Dynamic computation requires solving these 

coupled differential equations numerically, 

typically taking 100-1000 milliseconds per step on 

standard processors. For real-time control at 10-

100 Hz update rates, this is computationally 

prohibitive. Most deployed controllers employ 

kinematic frameworks augmented with simplified 

dynamics accounting for inertial effects and 

friction through empirically-tuned correction 

terms. 

2.3 Biological Central Pattern Generators 

Biological snakes generate locomotion through 

spinal Central Pattern Generators distributed neural 

circuits arranged segmentally along the spinal cord, 

capable of producing rhythmic patterns without 

continuous sensory input from higher brain centers 

(Liu, Gasoto, Jiang, et al., 2020). These circuits 

contain interconnected neurons with specific 

connectivity patterns enabling oscillatory activity.  

Sensory feedback modulates these intrinsic 

patterns through proprioceptive information from 

muscle spindles and Golgi tendon organs providing 

body configuration and tension information, 

contact sensors detecting environmental interaction 

enabling obstacle-aided locomotion, and vestibular 

information from the inner ear providing gravity 

and inertial cues essential during terrain transitions. 

Higher brain regions, particularly the brainstem, 

send descending commands to spinal CPGs 

controlling speed through frequency modulation 

where increased descending input raises oscillator 

frequency, direction through asymmetric CPG 

activation biasing left-right oscillator phases, and 

gait selection where different neural pathways 

activate distinct CPG subnetworks. The remarkable 

feature of biological CPGs is their autonomy 

isolated spinal cord preparations without brain or 

sensory input generate coordinated rhythmic 

patterns nearly indistinguishable from intact 

animal locomotion. 

3. CENTRAL PATTERN GENERATOR-

BASED CONTROL 

3.1 Mathematical Models for CPG 

Implementation 

CPGs emerged as a robotics paradigm following 

landmark discoveries that isolated neural circuits 

from Tritonia and lamprey could generate 

coordinated motor patterns (Liu et al., 2021). These 

discoveries demonstrated that rhythm generation is 

an intrinsic property of neural circuits, not merely 

an artifact of higher brain function. The biological 

CPG concept translates to robotic implementations 

through mathematical models capturing key 

features: autonomous rhythm generation without 

external input, phase coupling enabling 

coordination between oscillators, frequency 

modulation for speed control, and spatial 

coordination producing organized patterns. Linear 

chain CPG networks arrange oscillators 

segmentally, with reciprocal inhibition between 

antagonistic pairs generating anti-phase outputs, as 

shown in Figure 2. Phase differences between 

adjacent segments are controlled through synaptic 

delay and coupling strength, enabling flexible gait 

adjustment from slow undulation to rapid 

sidewinding by modulating these parameters (Liu, 

Gasoto, Onal, et al., 2020).
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Figure 2. Linear chain CPG network with segmentally organized coupled oscillators. Reciprocal inhibition 

creates anti-phase outputs for opposing joint motion. Phase difference controlled through synaptic delay 

and coupling strength. 

 

Matsuoka Oscillators represent the most widely 

employed CPG model in snake robot control due to 

their biological plausibility and implementation 

simplicity. Comprising reciprocally inhibited 

neuron pairs:

 

ẏi=-y
i
-∑w

j

ijsj+ui (4) 

ν̇i=-νi-yi
(5) 

si= max ( 0,νi) (6) 

 

Equation 4 Matsuoka membrane potential 

dynamics where y
i

 is the internal membrane 

potential integrating synaptic inputs and decay. 

Equation 5 Adaptation dynamics where νi 

represents adaptation or fatigue. Equation 6 

Output firing rate where si is the output firing rate 

clipped at zero. The parameters include wij  as 

synaptic weights encoding both connection 

strength and sign, and ui  as constant tonic input 

providing baseline excitation. The mutual 

inhibition between reciprocal neuron pairs 

automatically generates oscillatory behavior as one 

neuron fires, it inhibits its partner, which then 

recovers and inhibits the first, creating a natural 

oscillation cycle. 

Oscillation frequency increases linearly with input 

current ui, enabling elegant speed control through 

simple scalar modulation increasing ui  by 10% 

increases locomotion frequency by approximately 

10% (Liu, Gasoto, Onal, et al., 2020). Matsuoka 

oscillators offer biological plausibility with direct 

correspondence to identified neural circuits in 

lamprey and other vertebrates, demonstrated by 

detailed single-cell recordings showing similar 

temporal dynamics. They enable simple 

computation with complexity O (N) where N is the 

number of oscillators, permitting implementation 

on microcontrollers with kilohertz update rates. 

The model includes inherent output saturation 

through the max operation preventing unrealistic 

joint commands exceeding mechanical limits. 

Documented robustness in biological systems 

shows that oscillations persist despite 10-30% 

parameter variations, enabling tolerance to 

component tolerances in robotic implementations 

and unmodeled variations in real systems. 

Parameter tuning complexity remains a significant 

disadvantage determining appropriate values for 

wij , adaptation time constants, and ui  requires 

either extensive manual tuning through empirical 

testing or automated optimization (Tamura & 

Kamegawa, 2023). The coupling strength wij 

determines phase relationships; stronger coupling 

creates tighter phase relationships while weaker 

coupling produces more independent oscillations. 

At robotic timescales, time constants must be 

reduced from biological values to 10-100 

milliseconds for responsive control, sacrificing 
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strict biological fidelity but enabling faster 

adaptation to terrain changes. A 16-segment snake 

requires tuning 64+ parameters across the network, 

creating a high-dimensional optimization problem. 

Hopf Oscillators provide alternative frameworks 

based on bifurcation theory, guaranteeing stable 

limit-cycle oscillations (Zhang et al., 2017):

 

ṙ=μr (r0
2-r2) (7) 

θ̇=ω (8) 

 

Equation 7 Hopf amplitude dynamics where the 

amplitude r  exponentially converges to target 

amplitude r0  regardless of initial conditions, 

ensuring stable operation—a mathematical 

guarantee absent in Matsuoka models where 

stability depends on parameter values. Equation 8 

Phase dynamics where oscillation frequency is 

controlled by ω . Coupled Hopf oscillators can 

generate multi-frequency synchronized patterns 

through phase coupling. Computational advantages 

include explicit analytical solutions for certain 

coupling topologies, enabling predictive analysis 

of the coupled network behavior and stability 

guarantees through eigenvalue analysis of the 

linearized system. However, Hopf oscillators lack 

biological interpretability the bifurcation 

mechanism has no clear neural correlate, and the 

equations model mathematical attractors rather 

than neural dynamics. Amplitude and frequency 

control require separate mechanisms; the intuitive 

modulation that makes Matsuoka elegant is absent. 

Kuramoto Oscillators represent coupled phase 

oscillators with pure sinusoidal coupling:

 

θ̇i=ωi+∑K

j

ij sin ( θj-θi) (9) 

Equation 9 Kuramoto coupling model where θi 

is the phase of oscillator i,ωi  is the natural 

frequency, and Kij  is the coupling strength. This 

model is mathematically elegant enabling analysis 

through synchronization theory and order 

parameters from statistical mechanics (Mu et al., 

2025). Phase coordination can be computed 

explicitly through eigenvalue decomposition of the 

coupling matrix. However, Kuramoto oscillators 

lack biological motivation their mathematical form 

doesn't correspond to actual neural equations and 

amplitude control is entirely absent, requiring 

separate mechanisms. Their primary utility is 

analytical understanding of synchronization 

phenomena rather than implementation. 

3.2 CPG Network Architectures and Coupling 

Schemes 

CPG network architectures organize oscillators in 

linear chains mirroring spinal cord organization. 

Coupling schemes employ reciprocal inhibition 

producing anti-phase outputs for opposing joints, 

excitatory coupling with delays generating 

propagating waves with phase differences 

controlled by (Bing et al., 2017):

 

ϕ= arctan (
ωτ

1+K
) (10) 

Equation 10 Phase difference relationship where 

ϕ  is the phase difference between adjacent 

oscillators, ω  is oscillation frequency, τ  is the 

synaptic delay and K  is the coupling strength 

magnitude. This relationship enables precise 

control of phase differences through parameter 

adjustment. Gap junction coupling for 
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synchronized patterns represents an alternative 

approach using bidirectional electrical coupling. 

3.3 Gait Generation and Parameter 

Optimization 

Serpentine motion emerges naturally from chains 

with phase differences between 1.5 to 3 body 

waves, directly controlling gait characteristics 

through phase relationships (Bing et al., 2017). 

Parameter optimization employs genetic 

algorithms searching high-dimensional fitness 

landscapes for maximum locomotion speed and 

energy efficiency, particle swarm optimization 

coordinating population-based refinement, and 

symbiotic organism search incorporating 

biological cooperation principles. CPG limitations 

include parameter sensitivity requiring extensive 

tuning or optimization (Tamura & Kamegawa, 

2023), limited adaptation to unknown 

environments without sensory feedback 

integration, and difficulty generating non-rhythmic 

behaviors such as precision manipulation or rapid 

directional changes. 

 

4. LEARNING-BASED APPROACHES 

4.1 Reinforcement Learning for Locomotion 

Control 

Reinforcement Learning formulates locomotion 

as a Markov Decision Process where agents learn 

policies (control mappings) that maximize 

cumulative expected rewards (Qiu et al., 2021). 

State space comprises joint angles from encoders 

and velocities from differentiation, providing 

position and velocity feedback action space is 

continuous joint torques or position commands in 

the range [-τmax,τmax]  for each joint; rewards 

combine multiple objectives as R (t)=rs+re+rc 

where rs=vx  is forward progress incentive 

rewarding velocity in the desired direction, 

re=-α∑ |i τi| is energy efficiency penalty penalizing 

high torques, and rc  includes terrain-specific 

bonuses rewarding progress on difficult terrain. 

This multi-objective reward formulation enables 

agents to discover policies balancing competing 

objectives faster locomotion versus lower energy 

consumption. 

Policy gradient methods directly optimize policy 

parameters through gradient ascent on the expected 

reward objective (Liu et al., 2023b):

 

∇θJ (θ)=E [∇θ log πθ (a|s)Q
π
(s,a)] (11) 

 

Equation 11 Policy gradient formula where θ are 

policy parameters, πθ (a|s)  is the probability of 

action a given state s, and Q
π
(s,a) is the expected 

return from that action. The gradient points toward 

actions that yielded high rewards and away from 

actions that yielded low rewards. This elegant 

formulation enables on-policy learning the agent 

learns from experiences generated under its current 

policy. 

Proximal Policy Optimization achieves 

dramatically faster convergence through clipped 

objective functions that limit policy updates (Jia & 

Ma, 2022):

 

LCLIP(θ)=E[min ( rt(θ)Ât,clip(rt(θ),1-ϵ,1+ϵ)Ât)] (12) 

 

Equation 12 PPO clipped objective where 

rt (θ)=πθ (at|st)/πθold
(at|st) is the probability ratio 

comparing new and old policies, Ât is the estimated 

advantage (how much better this action is than 

average), and ϵ controls the clipping range. This 

prevents the policy from changing too dramatically 

in a single update, stabilizing learning. PPO 

achieves 10-100x faster convergence than policy 

gradient and value iteration methods, enabling 

practical application to snake robot control with 
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typical training requiring 50,000-200,000 

simulation steps or 500-2000 real robot episodes 

depending on task complexity. 

Deep Deterministic Policy Gradient (DDPG) 

extends continuous control through actor-critic 

architectures where an actor network πθ (s) 

generates continuous actions directly and a critic 

network Q
ϕ
(s,a) estimates the value of state-action 

pairs (Liu et al., 2021). This enables learning in 20+ 

dimensional action spaces typical of multi-segment 

snakes with simultaneous control of 8-16 joints. 

The critic guides the actor toward valuable actions 

through gradient. Sample efficiency remains the 

primary limitation learning from scratch requires 

millions of environment interactions. Domain 

randomization addresses this by training on 

distributions of simulated environments with 

friction coefficients varying ±50%, actuator delays 

0-100 ms, sensor noise varying 2-5x baseline, mass 

properties ±20%, and terrain roughness variations 

(Ji et al., 2023). Policies trained on diverse 

simulators transfer better to real robots despite 

performing worse on individual training 

environments. Curriculum learning progressively 

increases task difficulty; early training on flat 

surfaces followed by gradual terrain complexity 

improves learning stability and final performance 

by 20-30% compared to training only on target 

terrain. 

4.2 Evolutionary Algorithms and Hybrid CPG-

Learning Architectures 

Evolutionary Algorithms employ genetic 

algorithms mutating and recombining candidate 

solutions (Tamura & Kamegawa, 2023), particle 

swarm optimization coordinating population-based 

exploration, and symbiotic organism search 

incorporating mutualistic principles (Løwer et al., 

2023). These methods excel at multi-objective 

optimization through Pareto dominance concepts 

but require significant computational resources.

 

 

 

Figure 3. Fitness convergence curves showing learning efficiency. Hybrid CPG-learning achieves 90% of 

final performance with 100-1000x fewer samples than pure learning through structured search space 

exploitation. 

 

Hybrid CPG-Learning Architectures integrate 

CPG structure with learned parameters, 

dramatically reducing learning dimensionality. As 

shown in Figure 3 hybrid architectures combine 

CPG's real-time feasibility with learned parameter 

modulation (Liu et al., 2023a). CPG-ACTOR 

reduces parameter count from thousands (pure 

neural network) to tens (CPG + modulation layers), 

achieving 6x faster training while maintaining 

learning benefits (Liu et al., 2025). This 

dimensionality reduction dramatically improves 

sample efficiency (10³-10⁴ samples vs 10⁶-10⁷ for 

pure learning). Contact-aware learning 

incorporates tactile feedback through learned 

feedback gains modulating CPG parameters (Zhao 

et al., 2022), achieving 20-40% performance 

improvement on variable terrain while maintaining 

real-time feasibility through simple linear feedback 

rules rather than complex neural network 

inference. 

4.3 Neuromorphic Approaches 

Neuromorphic Approaches employ spiking 

neural networks simulating biological neurons 
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through spike timing (Zhang et al., 2025), enabling 

neuromorphic hardware implementation on 

platforms like Intel Loihi with 100x energy 

reduction compared to digital controllers. Spiking 

neural networks encode information as temporal 

patterns rather than firing rates, enabling 

asynchronous event-driven computation with 

intrinsic parallelism. 

5. COMPARATIVE ANALYSIS AND 

PERFORMANCE EVALUATION 

5.1 Performance Metrics and Evaluation 

Framework 

Performance evaluation requires careful definition 

of metrics (Seeja et al., 2022). Locomotion speed is 

typically normalized to body-lengths per second to 

enable comparison across robots of different sizes 

a 0.8 m/s snake 1 meter long achieves 0.8 BL/s 

while a 0.4 m/s snake 0.5 meters long also achieves 

0.8 BL/s despite different absolute speeds. Energy 

efficiency is quantified through cost of transport, a 

dimensionless metric enabling comparison across 

scales. Stability is measured through variance in 

heading angle during steady locomotion lower 

variance indicates more stable paths. Terrain 

adaptability is quantified through success rate 

across different surfaces. 

Table 1 Comparative Analysis of Control Methods 

presents comprehensive analysis of control 

methodologies across critical performance 

dimensions (Shi et al., 2025). CPG methods 

execute in 1-10 milliseconds per cycle on 

microcontrollers, suitable for small embedded 

systems. Achieved locomotion speeds range 0.3-

0.8 body-lengths per second on rigid platforms. 

Energy efficiency ranges 2.0-3.5 for typical CPG 

implementations. CPG methods demonstrate 

exceptional robustness across parameter variations; 

10-30% parameter perturbations cause negligible 

performance degradation.

 

 

Table 1. Comparative Analysis of Control Methods 

Characteristic CPG-Based Learning-Based Hybrid CPG-

Learning 

Real-time 

Feasibility 

High (1-10 ms) Low (50+ ms) High (10-20 ms) 

Parameter Tuning Manual, difficult Automatic Automatic 

Sample Efficiency N/A Low (~10⁶) High (~10³-10⁴) 

Robustness Moderate-High Varies High 

Speed (BL/s) 0.3-0.8 0.5-1.2 0.6-1.0 

Energy (CoT) 2.0-3.5 1.5-2.5 1.8-2.8 

 

Learning methods achieve 0.5-1.2 body-lengths 

per second through automatic gait discovery 

optimizing locomotion for simulation environment 

dynamics (Qiu et al., 2021). On simulation, 

learning methods surpass hand-tuned CPGs by 20-

50% depending on terrain due to discovering gaits 

specifically optimized for that environment's 

friction properties and terrain characteristics. 

However, sim-to-real transfer reduces this 

advantage significantly real-world performance 
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typically 20-30% below simulation, whereas CPG 

methods transfer with <10% degradation (Ji et al., 

2023). The performance gap occurs because 

learning optimizes for simulator dynamics that 

don't perfectly match reality. Learning methods 

require inference during deployment; typical 

neural network inference time 5-50 milliseconds on 

embedded GPU (NVIDIA Jetson Nano), 

incompatible with real-time control in fast-

changing environments requiring 10 Hz minimum 

update rates. This computational requirement 

explains why learning-based controllers are 

typically relegated to offline motion planning or 

vision-based high-level decision making rather 

than real-time feedback control. 

 

 

5.2 Experimental Results across Platforms and 

Terrains 

Hybrid CPG-learning approaches achieve 0.6-1.0 

body-lengths per second while maintaining real-

time feasibility and 30-50% faster training 

convergence through dimensionality reduction. 

Performance varies substantially across terrain 

types, as shown in Figure 4 experimental results 

demonstrate that hybrid CPG-learning methods 

achieve superior balance between speed, energy 

efficiency, and adaptability compared to pure CPG 

or pure learning approaches (Shi et al., 2025). The 

loaded snake robot (LSR1) successfully handles 

complex terrain including grass with vegetation 

resistance and uneven surfaces, validating the 

practical effectiveness of the control approach 

(Liu, Gasoto, Onal, et al., 2020). Hybrid methods 

consistently exceed 85% success rate across 

diverse terrain types through contact-aware 

modulation.

 

 

Figure 4. Loaded snake robot (LSR1) performance comparison before and after CPG parameter 

optimization showing 25% reduction in motion time across grass and uneven terrain. 

 

 

Table 2 Performance Summary Across Terrain 

Types and Platforms provides comprehensive 

performance metrics comparing CPG, learning-

based, and hybrid methods across five distinct 

terrain environments. The data demonstrates that 

hybrid approaches consistently achieve superior 

performance across all terrain types, from rigid 

laboratory floors to underwater environments.
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Table 2.Performance Summary across Terrain Types and Platforms 

Terrain Type CPG Success Learning 

Success 

Hybrid 

Success 

Preferred 

Method 

Rigid Floor 95% 98% 99% Hybrid 

Granular 

(Sand) 

65% 72% 85% Hybrid 

Rocky/Uneven 60% 75% 82% Hybrid 

Confined Pipes 90% 85% 92% Hybrid 

Underwater 88% 92% 95% Hybrid 

 

On rigid laboratory floors, CPG controllers achieve 

smooth, periodic locomotion with minimal 

computational overhead. On sandy and granular 

substrates where individual contacts vary 

unpredictably, contact-aware CPG modulation 

improves performance 15-25% through sensory 

feedback (Zhao et al., 2022). Soft robot platforms 

benefit dramatically from learning due to complex 

actuator dynamics (Lu et al., 2024) soft robot 

learning often outperforms CPG approaches by 30-

50%. 

Industrial applications including inspection robots 

(ACM-R5) and search-and-rescue platforms 

employ hybrid or conservative CPG approaches 

prioritizing reliability (P. Ngamkajornwiwat & N. 

Pothita, 2024). The ACM-R5 subsea inspection 

platform achieves reliable 0.4 m/s locomotion 

despite highly variable environments. Medical 

applications employ tightly controlled CPG-based 

approaches ensuring predictable, safe behavior. 

 

 

 

6. SENSORY INTEGRATION AND TERRAIN 

ADAPTATION 

Sensory feedback is essential for robust locomotion 

in unstructured environments. As shown in Figure 

5 the primary concertina locomotion pattern is 

achieved through modulating CPG parameters in 

response to sensory signals. This gait is particularly 

effective in constrained spaces such as pipelines 

where the robot leverages discrete contact points 

for propulsion. The concertina motion emerges 

from the same CPG network with different phase 

offsets and amplitude modulations compared to 

open-space gaits, demonstrating a unified control 

framework for diverse locomotion behaviors. Each 

gait exploits distinct environmental interactions: 

concertina leverages fixed contact points in 

confined spaces enabling efficient navigation 

through narrow passages (Li et al., 2019). Sensory 

feedback integration enables real-time gait 

selection and parameter adaptation through 

proprioceptive information from joint angles and 

motor currents providing body configuration, 

contact sensors detecting environmental 

interaction, and vestibular information providing 

orientation cues essential during terrain transitions.
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Figure 5. Concertina locomotion in pipeline showing body configuration at 4 motion stages (0s, 3s, 5s, 8s). 

Head extends while maintaining tail grip, creating forward progression through sequential contact point 

dynamics.

 

6.1 Feedback Mechanisms 

Sensory feedback modulates CPG parameters through: 

ui(t)=u0+∑ αk

k

⋅sk
sensor(t) (13) 

 

Equation 13: Sensory feedback modulation 

where ui(t)  is the modulated tonic input to 

oscillator i,u0  is baseline input, αk  are sensory 

coupling gains, and sk
sensor  are normalized sensor 

signals. This multiplicative coupling enables 

proportional modulation while maintaining 

oscillatory dynamics. 

6.2 Contact-Aware Locomotion Control 

Contact-aware CPG control demonstrates 20-40% 

improvement in traversal success rates across 

uneven terrain (Zhao et al., 2022). Sensory 

modulation mechanisms include frequency 

adaptation where contact stimulation increases 

CPG oscillation frequency enabling faster escape, 

amplitude modulation where strong contact signals 

reduce movement amplitude enabling cautious 

navigation, and phase shifting enabling rapid 

directional correction. These mechanisms operate 

within biological CPG frameworks through simple 

multiplicative or additive modulation of oscillator 

parameters, maintaining real-time feasibility. 

This sensory integration is particularly valuable for 

obstacle-aided locomotion where snakes leverage 

environmental features for propulsion (Lim et al., 

2020). A snake encountering a vertical peg can 

press against it to gain leverage for forward 

progression. Tegotae-inspired mechanisms use 

contact feedback to trigger specific motor 

responses enabling energy-efficient obstacle 

negotiation. Perception-driven approaches employ 

forward-facing cameras to detect upcoming 

obstacles and plan trajectories leveraging obstacle 

positions. 

7. RESEARCH GAPS AND CHALLENGES 

7.1 Sim-to-Real Transfer Challenges 

Sim-to-Real Transfer remains a critical barrier (Ji 

et al., 2023). Simulators employ simplified friction 

models while real robots exhibit velocity-

dependent friction. Equations 14-15 describe the 

friction model mismatch:
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f
sim

(v)=μ⋅N (constant) (14) 

f
real

(v)=(μ
s
-μ

k
e-v/vs)⋅N (15) 

 

Equation 14 Simulator friction model assumes 

constant friction coefficient regardless of velocity. 

Equation 15 Real robot friction model where 

friction varies with velocity based on static friction 

coefficient μ
s
, kinetic friction μ

k
, and characteristic 

velocity vs . This mismatch causes controllers 

optimized in simulation to perform poorly on real 

robots. Actuator responses are idealized while real 

servos exhibit delays and saturation (Badran et al., 

2020). Domain randomization improves transfer 

success rates from 30-40% to 60-80% at cost of 

reduced target environment performance. 

7.2 Energy Efficiency Limitations 

Energy Efficiency represents a critical practical 

limitation (Baysal & Altas, 2020). Biological 

snakes achieve cost of transport 0.5-1.0 while 

robotic systems achieve 2-5. Cost of transport is 

calculated using:

 

 

CoT=
Etotal

m⋅g⋅d
(16) 

 

Equation 16 Cost of transport formula where 

Etotal is total energy consumed, m is body mass,gis 

gravitational acceleration, and d is distance 

traveled. This dimensionless metric enables 

comparison across robots of different sizes and 

masses. Optimization strategies include gearbox 

redesign for steady-state efficiency, pulse-width 

modulation reducing energy during posture 

maintenance, and compliant joints reducing impact 

losses. Multi-objective optimization could achieve 

30-50% energy reduction. 

7.3 Real-Time Sensory Integration 

Real-Time Sensory Integration requires 

embedding sensory processing and control within 

10-100 millisecond cycles (Seeja et al., 2022). 

Simple feedback rules integrate in 1-5 ms but lack 

sophistication. Learning-based sensory integration 

requires 5-20 ms neural network inference on 

embedded systems, approaching cycle time 

budgets. Neuromorphic sensory processing using 

spiking neural networks promises latency 

reduction to 1-2 ms through asynchronous event-

driven computation (Zhang et al., 2025). 

7.4 Standardization Issues 

Standardization is critically lacking. Table 3 

summarizes research gaps and mitigation 

strategies. No agreed-upon benchmarks exist; 

different papers employ different simulation 

environments, robot specifications, and evaluation 

metrics. Creating standardized benchmarks would 

accelerate progress. The International Organization 

for Standardization (ISO) has begun 

standardization efforts, but consensus remains 

elusive due to diverse application requirements.
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Table 3. Critical Research Gaps and Mitigation Strategies 

Research Gap Current 

Challenge 

ChallengeProposed 

Solution 

Expected Impact 

Sim-to-Real 20-30% drop Domain 

randomization 

Improve success to 

80%+ 

Energy Efficiency 2-5 CoT Multi-objective 

optimization 

Achieve 1.5-2.0 

CoT 

Sensory Integration 5-50 ms latency Neuromorphic 

hardware 

Reduce to <2 ms 

Standardization Incomparable Unified benchmarks Enable meta-

analysis 

Verification Safety proving Formal methods 

 

Enable medical 

apps 

 

 

9. FUTURE DIRECTIONS 

Future research should prioritize establishing 

standardized benchmarking platforms enabling 

reproducible comparative evaluation across methods 

and platforms. Creating unified benchmark suites 

analogous to ImageNet in computer vision would 

accelerate progress through enabling meaningful 

meta-analysis and reproducible comparisons. Sim-

to-real transfer techniques must reduce domain gap 

through careful system identification characterizing 

actual friction, actuator delays, and contact dynamics 

specific to each platform. Energy-efficient controller 

design through multi-objective optimization can 

achieve 30-50% efficiency improvements by 

balancing speed, power consumption, and stability 

within formalized Pareto optimization frameworks. 

Unified frameworks integrating CPGs with learning 

should exploit structured search spaces while 

maintaining learning benefits, enabling scalable 

solutions across robot morphologies and application 

domains. Neuromorphic implementations on spiking 

hardware promise 100x energy reduction through 

asynchronous event-driven computation, enabling 

truly autonomous operation in power-limited 

scenarios. 

Bio-hybrid approaches interfacing biological neural 

tissues with robotic actuators offer radically different 

control paradigms not yet fully explored. Lamprey 

spinal cord segments coupled to robotic bodies 

demonstrate proof-of-concept; scaling to full-bodied 

bio-hybrid systems remains an open challenge 

requiring advances in interfacing, control 

integration, and biological sustainability. These 

systems leverage biological neural plasticity and 

adaptation while providing robotic mobility, 

potentially unlocking control capabilities currently 

impossible with artificial systems. The convergence 

of neuroscience and robotics through bio-hybrid 

systems represents a frontier with profound 

implications for understanding nervous system 

function and developing truly adaptive robotic 

systems. 

Snake robot research will increasingly focus on 

embodied AI principles where control emerges from 

agent-environment interaction rather than explicit 

programming. This paradigm shift requires 

rethinking how we design learning algorithms, 

incorporate biological inspiration, and evaluate robot 

performance. As hardware matures and control 

methods advance, snake robots will transition from 

laboratory platforms to practical tools with broad 
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deployment. Applications will expand from current 

domains (disaster response, infrastructure 

inspection, environmental exploration) to medical 

robotics, space exploration (traversing asteroid 

surfaces and planetary caves), and underwater 

research. 

The integration of advancing sensors (fiber-optic 

gyroscopes providing inertial measurement without 

drift, distributed pressure sensors enabling obstacle 

detection, bio-inspired flow sensors enabling 

ambient awareness), improved actuators (artificial 

muscles providing compliant actuation, electroactive 

polymers enabling programmable stiffness), and 

sophisticated controllers combining biological 

inspiration with machine learning positions snake 

robots as a transformative platform. This platform 

will serve dual purposes: advancing our 

understanding of how biological systems achieve 

robust locomotion across complex environments, 

and developing adaptive robotic systems capable of 

autonomous operation in unstructured, human-

environments where conventional platforms fail. 

8. CONCLUSIONS 

Snake robot locomotion control has matured through 

two complementary paradigms. CPG-based methods 

offer biological inspiration, real-time feasibility on 

embedded systems, and interpretability through 

direct neural correspondence. Learning-based 

approaches enable automatic gait discovery without 

manual tuning, excel at multi-objective optimization 

balancing speed and efficiency, and adapt online to 

unknown environments. Hybrid architectures 

combining CPG structure with learned parameters 

represent the most promising direction, balancing 

biological plausibility with adaptive capability while 

maintaining computational efficiency and real-time 

performance. 

The comparative analysis across platforms and 

terrains reveals that no single methodology 

dominates across all application domains. CPG-

based controllers excel in resource-constrained 

embedded systems and safety-critical applications 

where interpretability and robustness are paramount. 

Learning-based approaches maximize performance 

when computational resources are available and sim-

to-real transfer can be properly addressed through 

domain randomization and careful system 

identification. Hybrid CPG-learning architectures 

emerge as the optimal choice for most practical 

applications, leveraging CPG's real-time feasibility 

and biological structure while incorporating 

learning's adaptive capabilities and multi-objective 

optimization. 

Critical research gaps identified throughout this 

review sim-to-real transfer challenges, energy 

efficiency limitations, real-time sensory integration 

constraints, and standardization fragmentation 

establish the agenda for advancing the field. 

Addressing these gaps requires not incremental 

improvements but fundamental advances in how we 

conceptualize the integration of neural structures, 

learning mechanisms, and embodied robot 

morphologies. The field stands at an inflection point 

where mature understanding of individual 

methodologies enables integration into more 

sophisticated systems. 

REFERENCES 

Badran, M. A., Khan, Md. R., & Toha, S. F. (2020). 

Implementation of Motion Algorithm on a Snake 

Robot Prototype for Serpentine Locomotion. 2020 

IEEE 8th Conference on Systems, Process and 

Control (ICSPC), 152–157. 

https://doi.org/10.1109/ICSPC50992.2020.9305750 

Baysal, Y. A., & Altas, I. H. (2020). Optimally 

Efficient Locomotion of Snake Robot. 2020 

International Conference on INnovations in 

Intelligent SysTems and Applications (INISTA), 1–6. 

https://doi.org/10.1109/INISTA49547.2020.919462

1 

Bing, Z., Cheng, L., Chen, G., Röhrbein, F., Huang, 

K., & Knoll, A. (2017). Towards autonomous 

locomotion: CPG-based control of smooth 3D 

slithering gait transition of a snake-like robot. 

Bioinspiration & Biomimetics, 12(3), 035001. 

https://doi.org/10.1088/1748-3190/aa644c 

Campanaro, L., Gangapurwala, S., Martini, D. D., 

Merkt, W., & Havoutis, I. (2021). CPG-ACTOR: 

Reinforcement Learning for Central Pattern 

Generators (arXiv:2102.12891). arXiv. 

https://doi.org/10.48550/arXiv.2102.12891 

Fukuoka, Y., Otaka, K., Takeuchi, R., Shigemori, K., 

& Inoue, K. (2023). Mechanical Designs for Field 

Undulatory Locomotion by a Wheeled Snake-Like 



GAS Journal of Engineering and Technology (GASJET) | ISSN: 3048-5800 | Volume 3 | Issue 1 | 2026 

 
GAS Journal of Engineering and Technology (GASJET) | Published by GAS Publishers 53 

 

Robot With Decoupled Neural Oscillators. IEEE 

Transactions on Robotics, 39(2), 959–977. 

https://doi.org/10.1109/TRO.2022.3226364 

Ji, Z., Song, G., Wang, F., Li, Y., & Song, A. (2023). 

Design and Control of a Snake Robot With a Gripper 

for Inspection and Maintenance in Narrow Spaces. 

IEEE Robotics and Automation Letters, 8(5), 3086–

3093. https://doi.org/10.1109/LRA.2023.3265591 

Jia, Y., & Ma, S. (2022). Distributed Coach-Based 

Reinforcement Learning Controller for Snake Robot 

Locomotion. 2022 IEEE/RSJ International 

Conference on Intelligent Robots and Systems 

(IROS), 1231–1238. 

https://doi.org/10.1109/IROS47612.2022.9981749 

Li, P., Sun, Y., Yang, Y., Li, C., Pu, H., Luo, J., & 

Xie, S. (2019). Design and Modeling an Elongatable 

Robotic Snake towards Augmented Serpentine Gait. 

Robotics and Mechatronics. 

Lim, J., Yang, W., Shen, Y., & Yi, J. (2020). 

Analysis and Validation of Serpentine Locomotion 

Dynamics of a Wheeled Snake Robot Moving on 

Varied Sloped Environments. 2020 IEEE/ASME 

International Conference on Advanced Intelligent 

Mechatronics (AIM), 1069–1074. 

https://doi.org/10.1109/AIM43001.2020.9158974 

Liu, X., Gasoto, R., Jiang, Z., Onal, C., & Fu, J. 

(2020). Learning to Locomote with Artificial Neural-

Network and CPG-based Control in a Soft Snake 

Robot. 2020 IEEE/RSJ International Conference on 

Intelligent Robots and Systems (IROS), 7758–7765. 

https://doi.org/10.1109/IROS45743.2020.9340763 

Liu, X., Gasoto, R., Onal, C., & Fu, J. (2020). 

Learning to Locomote with Deep Neural-Network 

and CPG-based Control in a Soft Snake Robot 

(arXiv:2001.04059). arXiv. 

https://doi.org/10.48550/arXiv.2001.04059 

Liu, X., Onal, C. D., & Fu, J. (2023a). Integrating 

Contact-aware Feedback CPG System for Learning-

based Soft Snake Robot Locomotion Controllers 

(arXiv:2309.02781). arXiv. 

https://doi.org/10.48550/arXiv.2309.02781 

Liu, X., Onal, C. D., & Fu, J. (2023b). Reinforcement 

Learning of CPG-Regulated Locomotion Controller 

for a Soft Snake Robot. IEEE Transactions on 

Robotics, 39(5), 3382–3401. 

https://doi.org/10.1109/TRO.2023.3286046 

Liu, X., Onal, C. D., & Fu, J. (2025). Integrating 

Contact-Aware CPG System for Learning-Based 

Soft Snake Robot Locomotion Controllers. IEEE 

Transactions on Robotics, 41, 1581–1601. 

https://doi.org/10.1109/TRO.2025.3539173 

Liu, X., Onal, C., & Fu, J. (2021). Learning Contact-

aware CPG-based Locomotion in a Soft Snake Robot 

(arXiv:2105.04608). arXiv. 

https://doi.org/10.48550/arXiv.2105.04608 

Løwer, J., Gravdahl, I., Varagnolo, D., & Stavdahl, 

Ø. (2023). Form Closure for Fully Actuated and 

Robust Obstacle-Aided Locomotion in Snake 

Robots. IEEE Robotics and Automation Letters, 

8(11), 7360–7367. 

https://doi.org/10.1109/LRA.2023.3316912 

Lu, J., Hu, X., Zhu, X., Chen, C., & Wang, H. (2024). 

Adaptive Soft Pneumatic Robot Inspired by 

Locomotion of Snake. 2024 IEEE International 

Conference on Robotics and Biomimetics (ROBIO), 

713–718. 

https://doi.org/10.1109/ROBIO64047.2024.109073

34 

Mu, J., Zong, X., Hou, X., & Zhang, Y. (2025). 

Design and Optimization of Gait Transition Control 

for Loaded Snake Robots Using CPG Algorithms. 

2025 3rd International Conference on Control and 

Robot Technology (ICCRT), 1–7. 

https://doi.org/10.1109/ICCRT63554.2025.1107273

1 

P. Ngamkajornwiwat, & N. Pothita. (2024). 

Investigating Adaptive CPG-based Control of a 

Snake Robot with Switch Signal Input for 

Maneuvering in Varying Environments. Journal of 

Research and Applications in Mechanical 

Engineering (JRAME), 12, JRAME24. 

https://doi.org/10.14456/JRAME.2024.23 

Park, S., Lee, H., & Lee, D. (2020). Robust Motion 

Control of Robotic Systems with Environmental 

Interaction via Data-Driven Inversion of CPG. 2020 

20th International Conference on Control, 

Automation and Systems (ICCAS), 692–698. 

https://doi.org/10.23919/ICCAS50221.2020.926837

7 

Qiu, K., Zhang, H., Lv, Y., Wang, Y., Zhou, C., & 

Xiong, R. (2021). Reinforcement Learning of 

Serpentine Locomotion for a Snake Robot. 2021 

IEEE International Conference on Real-Time 



GAS Journal of Engineering and Technology (GASJET) | ISSN: 3048-5800 | Volume 3 | Issue 1 | 2026 

 
GAS Journal of Engineering and Technology (GASJET) | Published by GAS Publishers 54 

 

Computing and Robotics (RCAR), 468–473. 

https://doi.org/10.1109/RCAR52367.2021.9517436 

Seeja, G., Selvakumar Arockia Doss, A., & Hency, 

V. B. (2022). A Survey on Snake Robot Locomotion. 

IEEE Access, 10, 112100–112116. 

https://doi.org/10.1109/ACCESS.2022.3215162 

Shi, H., Meng, Y., Cui, W., Rao, M., Wang, S., & 

Xie, Y. (2025). Biomimetic Underwater Soft Snake 

Robot: Self-Motion Sensing and Online Gait 

Control. IEEE Transactions on Robotics, 41, 1193–

1210. https://doi.org/10.1109/TRO.2025.3530349 

Tamura, H., & Kamegawa, T. (2023). Parameter 

search of a CPG network using a genetic algorithm 

for a snake robot with tactile sensors moving on a 

soft floor. Frontiers in Robotics and AI, 10, 1138019. 

https://doi.org/10.3389/frobt.2023.1138019 

Zhang, C., Wang, C., Pan, W., & Santina, C. D. 

(2025). SpikingSoft: A Spiking Neuron Controller 

for Bio-inspired Locomotion with Soft Snake 

Robots. 2025 IEEE 8th International Conference on 

Soft Robotics (RoboSoft), 1–8. 

https://doi.org/10.1109/RoboSoft63089.2025.11020

907 

Zhang, D., Xiao, Q., Cao, Z., Huang, R., & Fu, Y. 

(2017). Smooth transition of the CPG-based 

controller for snake-like robots. 2017 IEEE 

International Conference on Robotics and 

Biomimetics (ROBIO), 2716–2721. 

https://doi.org/10.1109/ROBIO.2017.8324830 

Zhao, W., Wang, J., & Fei, Y. (2022). A Multigait 

Continuous Flexible Snake Robot for Locomotion in 

Complex Terrain. IEEE/ASME Transactions on 

Mechatronics, 27(5), 3751–3761. 

https://doi.org/10.1109/TMECH.2021.3131766 

 


