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Abstract

Review Article

generation, soft robotics.

Snake robots represent a paradigm shift in mobile robotics for navigation in unstructured environments,
leveraging bioinspired control derived from natural neural mechanisms. This review synthesizes research
on snake robot locomotion control, focusing on two dominant methodologies. Central Pattern Generator
(CPG) based control and learning-based approaches. We examine Matsuoka and Hopf oscillators, parameter
optimization via evolutionary algorithms, and hybrid CPG-learning architectures. Learning approaches
encompass reinforcement learning, evolutionary optimization, and spiking neural networks. We synthesize
insights from peer-reviewed literature covering rigid and soft platforms, evaluate comparative performance
across terrains, and identify critical gaps in sim-to-real transfer, energy efficiency, and sensory integration.
This review guides researchers toward practical deployment of adaptive snake robot systems.
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1. INTRODUCTION

Biological snakes represent nature's most
remarkable locomotion achievements, navigating
complex terrain with minimal energy expenditure.
Unlike wheeled and legged robots constrained by
rigid morphologies, snakes exploit continuous
body deformation, anisotropic friction interactions,
and distributed neural control to traverse
environments from sandy deserts to rocky
mountains to underground tunnels (Seeja et al.,
2022). This capability emerges from three
integrated elements compliant musculoskeletal
systems enabling continuous deformability,
distributed contact exploiting environmental
friction as propulsion aids, and spinal Central
Pattern Generators distributed neural circuits
capable of autonomous rhythm generation.
Engineering snake robot platforms inspired by
these biological principles offers unprecedented

capability for deployment where conventional
robots fail.

Practical  applications drive snake robot
development. Search and rescue requires
navigation through collapsed structures following
disasters where wheels and legs prove useless.
Infrastructure inspection demands traversing
confined pipelines and utility networks in industrial
facilities and nuclear plants. Environmental
monitoring requires exploring cave systems and
underwater  environments  inaccessible to
conventional platforms. Medical applications
including minimally invasive surgery require
manipulation  within  constrained anatomical
spaces. Industrial platforms including the ACM-R
series and Kulko demonstrate commercial maturity
with operational systems deployed in real-world
missions (P. Ngamkajornwiwat & N. Pothita,
2024).
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Snake robot control presents distinct challenges
absent in traditional robotics. High kinematic
dimensionality 30+ degrees of freedom makes
conventional inverse kinematics intractable.
Distributed environmental contact creates complex
dynamics; the robot simultaneously interacts with
terrain  through  multiple body segments
experiencing unique contact forces and friction.
Environmental adaptation is essential; locomotion
performance depends critically on friction
coefficients, obstacle distributions, and terrain
compliance. Real-time computational constraints
on embedded microcontrollers requiring execution
within  10-100 milliseconds preclude complex
controllers.  These  constraints  necessitate
alternative  paradigms  exploiting  inherent
locomotion structure rather than centralized
trajectory planning.

Two complementary control paradigms address
these constraints. Central Pattern Generator-based
approaches leverage biological inspiration
(Campanaro et al., 2021), generating locomotion
through distributed oscillatory circuits requiring
minimal tuning and executing in real-time on
resource-constrained  systems.  Learning-based
approaches enable automatic gait discovery
through reinforcement learning and evolutionary
algorithms, achieving superior performance when
computational resources are available (Liu et al.,
2025). Hybrid architectures combining CPG
structures with learned parameters represent
emerging best practice (Liu et al., 2023a),
balancing biological plausibility with adaptive
capability while maintaining real-time feasibility.

This review synthesizes research across CPG-
based and learning-based  methodologies,
performance analysis across platforms and terrains,
critical research gaps, and future directions. We
examine mathematical foundations (Matsuoka and

Hopf oscillators), parameter optimization (genetic
algorithms,  particle  swarm  optimization),
reinforcement learning (PPO, DDPG), and hybrid
integration. Specific focus addresses sim-to-real
transfer challenges, energy efficiency limitations,
and standardization requirements essential for
enabling practical autonomous snake robot
systems.

2. BACKGROUND: SNAKE LOCOMOTION
PRINCIPLES

2.1 Snake Robot Platforms and Architectures

Contemporary snake robot platforms exhibit
diverse architectures reflecting design philosophy
and application requirements (P.
Ngamkajornwiwat & N. Pothita, 2024). As shown
in Figure 1 modular rigid platforms like the ACM-
R series employ 2 degrees of freedom per segment
enabling roll and yaw motion through servo-
actuated joints. Recent soft robot designs
emphasize pneumatic or hydraulic actuators
embedded in compliant materials (Lu et al., 2024),
offering compliance for safe interaction and
continuous deformability enabling passage through
spaces far smaller than the robot's relaxed
configuration. Hybrid platforms integrate rigid
skeletal structures with soft actuators, combining
structural support and sensor mounting with
compliant deformation. Wheel-equipped platforms
exploit anisotropic friction by mounting passive
wheels perpendicular to joint axes (Fukuoka et al.,
2023), effectively decoupling lateral and forward
motion to reduce energy requirements on terrestrial
surfaces. These diverse platforms share common
control challenges: high kinematic dimensionality,
distributed environmental contact, and real-time
computational constraints on embedded systems
(Seeja et al., 2022).
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Figure 1. Detailed view of modular snake robot mechanical design showing segmental structure with
articulated joints, actuators, and sensor integration enabling flexible locomotion across diverse terrains.

2.2 Kinematic and Dynamic Modeling

The fundamental serpenoid equation describes snake undulation:

y=Bsin (

Where B is amplitude, 1 is wavelength typically
0.8-1.2 body lengths, T'is period corresponding to
undulation frequency, ¢ is time, and € is phase
offset. Equation 1 Serpenoid curve equation
specifies the spatial-temporal wave pattern that
forms the basis for CPG-based controllers (Liu,
Gasoto, Onal, et al., 2020). This spatial-temporal
wave pattern specification forms the basis for
CPG-based controllers. The serpenoid curve
describes the trajectory that each point along the

2nx 2wt )
—+—+€
T
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snake's body traces during locomotion. The
wavelength determines how many body waves are
present simultaneously shorter wavelengths create
faster, more frequent undulations while longer
wavelengths produce slower, more powerful
movements. The phase offset enables directional
control; asymmetric phase relationships between
left and right body sides steer the robot.

Joint angles are directly modulated by CPG outputs
through:

0,(1)=A-s,(f) (2

Where 4 is amplitude scaling factor determining
maximum joint deflection, s; is CPG firing rate for
segment i ranging between -1 and 1, and 6; is the
resulting joint angle command in radians.
Equation 2 CPG to joint angle mapping enables
the remarkable simplicity of CPG-based
implementations no complex inverse kinematics

computation is required. The CPG output naturally
encodes both the magnitude (through firing rate)
and temporal dynamics necessary for smooth
locomotion.

Dynamic models incorporating acceleration, force
interactions, and contact mechanics are governed
by (Park et al., 2020):
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Where M(q) is the nxn mass matrix, C captures
Coriolis and centripetal effects, G represents
gravitational forces, = are applied joint torques
from actuators, J. is the mxn contact Jacobian
relating contact forces to joint torques, and F, are
contact forces including friction and normal forces.
Equation 3 Lagrangian dynamics model
becomes critical when the robot interacts with
obstacles, terrain irregularities, or confined spaces.
Dynamic computation requires solving these
coupled differential equations numerically,
typically taking 100-1000 milliseconds per step on
standard processors. For real-time control at 10-
100 Hz update rates, this is computationally
prohibitive. Most deployed controllers employ
kinematic frameworks augmented with simplified
dynamics accounting for inertial effects and
friction through empirically-tuned correction
terms.

2.3 Biological Central Pattern Generators

Biological snakes generate locomotion through
spinal Central Pattern Generators distributed neural
circuits arranged segmentally along the spinal cord,
capable of producing rhythmic patterns without
continuous sensory input from higher brain centers
(Liu, Gasoto, Jiang, et al., 2020). These circuits
contain interconnected neurons with specific
connectivity patterns enabling oscillatory activity.

Sensory feedback modulates these intrinsic
patterns through proprioceptive information from
muscle spindles and Golgi tendon organs providing
body configuration and tension information,
contact sensors detecting environmental interaction
enabling obstacle-aided locomotion, and vestibular
information from the inner ear providing gravity
and inertial cues essential during terrain transitions.
Higher brain regions, particularly the brainstem,
send descending commands to spinal CPGs

controlling speed through frequency modulation
where increased descending input raises oscillator
frequency, direction through asymmetric CPG
activation biasing left-right oscillator phases, and
gait selection where different neural pathways
activate distinct CPG subnetworks. The remarkable
feature of biological CPGs is their autonomy
isolated spinal cord preparations without brain or
sensory input generate coordinated rhythmic
patterns nearly indistinguishable from intact
animal locomotion.

3. CENTRAL PATTERN GENERATOR-
BASED CONTROL

3.1 Mathematical Models for CPG
Implementation

CPGs emerged as a robotics paradigm following
landmark discoveries that isolated neural circuits
from Tritonia and lamprey could generate
coordinated motor patterns (Liu et al., 2021). These
discoveries demonstrated that rhythm generation is
an intrinsic property of neural circuits, not merely
an artifact of higher brain function. The biological
CPG concept translates to robotic implementations
through mathematical models capturing key
features: autonomous rhythm generation without
external input, phase coupling enabling
coordination  between oscillators, frequency
modulation for speed control, and spatial
coordination producing organized patterns. Linear
chain  CPG networks arrange oscillators
segmentally, with reciprocal inhibition between
antagonistic pairs generating anti-phase outputs, as
shown in Figure 2. Phase differences between
adjacent segments are controlled through synaptic
delay and coupling strength, enabling flexible gait
adjustment from slow undulation to rapid
sidewinding by modulating these parameters (Liu,
Gasoto, Onal, et al., 2020).

@ GAS Journal of Engineering and Technology (GASJET) | Published by GAS Publishers




snnke-like robot CPG model

horizontal joints

e B

vertical joints

desived
CPG param

(A B)

snake optimal phase diff [rad) board optimal phase diff [rad)
T 02 03 04 9

02

104 oA

0 0 e

02 : 04 00
06 08 1 03 0.4 05
CPG param. A [rad]

CPG param, B [rad

CPG param. A [rad]

Figure 2. Linear chain CPG network with segmentally organized coupled oscillators. Reciprocal inhibition
creates anti-phase outputs for opposing joint motion. Phase difference controlled through synaptic delay
and coupling strength.

Matsuoka Oscillators represent the most widely
employed CPG model in snake robot control due to
their biological plausibility and implementation

Vi=y - Z wijs;tu,
J
VisViry,

s;=max (0,v;)

Equation 4 Matsuoka membrane potential
dynamics where y. is the internal membrane
potential integrating synaptic inputs and decay.
Equation 5 Adaptation dynamics where v;
represents adaptation or fatigue. Equation 6
Output firing rate where s; is the output firing rate
clipped at zero. The parameters include w; as
synaptic weights encoding both connection
strength and sign, and u; as constant tonic input
providing baseline excitation. The mutual
inhibition between reciprocal neuron pairs
automatically generates oscillatory behavior as one
neuron fires, it inhibits its partner, which then
recovers and inhibits the first, creating a natural
oscillation cycle.

Oscillation frequency increases linearly with input
current u;, enabling elegant speed control through
simple scalar modulation increasing u; by 10%
increases locomotion frequency by approximately
10% (Liu, Gasoto, Onal, et al., 2020). Matsuoka
oscillators offer biological plausibility with direct
correspondence to identified neural circuits in
lamprey and other vertebrates, demonstrated by
detailed single-cell recordings showing similar

simplicity. Comprising reciprocally inhibited
neuron pairs:
“4)
6))
(6)
temporal dynamics. They enable simple

computation with complexity O (N) where N is the
number of oscillators, permitting implementation
on microcontrollers with kilohertz update rates.
The model includes inherent output saturation
through the max operation preventing unrealistic
joint commands exceeding mechanical limits.
Documented robustness in biological systems
shows that oscillations persist despite 10-30%
parameter variations, enabling tolerance to
component tolerances in robotic implementations
and unmodeled variations in real systems.

Parameter tuning complexity remains a significant
disadvantage determining appropriate values for
w;; , adaptation time constants, and u; requires
either extensive manual tuning through empirical
testing or automated optimization (Tamura &
Kamegawa, 2023). The coupling strength w;
determines phase relationships; stronger coupling
creates tighter phase relationships while weaker
coupling produces more independent oscillations.
At robotic timescales, time constants must be
reduced from biological values to 10-100
milliseconds for responsive control, sacrificing
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strict biological fidelity but enabling faster
adaptation to terrain changes. A 16-segment snake
requires tuning 64+ parameters across the network,
creating a high-dimensional optimization problem.

Hopf Oscillators provide alternative frameworks
based on bifurcation theory, guaranteeing stable
limit-cycle oscillations (Zhang et al., 2017):

i=ur (rg-1°) (7

Equation 7 Hopf amplitude dynamics where the
amplitude » exponentially converges to target
amplitude r, regardless of initial conditions,
ensuring stable operation—a mathematical
guarantee absent in Matsuoka models where
stability depends on parameter values. Equation 8
Phase dynamics where oscillation frequency is
controlled by . Coupled Hopf oscillators can
generate multi-frequency synchronized patterns
through phase coupling. Computational advantages
include explicit analytical solutions for certain
coupling topologies, enabling predictive analysis

®)

of the coupled network behavior and stability
guarantees through eigenvalue analysis of the
linearized system. However, Hopf oscillators lack
biological interpretability  the  bifurcation
mechanism has no clear neural correlate, and the
equations model mathematical attractors rather
than neural dynamics. Amplitude and frequency
control require separate mechanisms; the intuitive
modulation that makes Matsuoka elegant is absent.

Kuramoto Oscillators represent coupled phase
oscillators with pure sinusoidal coupling:

Di=wt Z Kijsin(6,-0,) ©)
J

Equation 9 Kuramoto coupling model where 6;
is the phase of oscillator i,w; is the natural
frequency, and Kj; is the coupling strength. This
model is mathematically elegant enabling analysis
through  synchronization theory and order
parameters from statistical mechanics (Mu et al.,
2025). Phase coordination can be computed
explicitly through eigenvalue decomposition of the
coupling matrix. However, Kuramoto oscillators
lack biological motivation their mathematical form
doesn't correspond to actual neural equations and
amplitude control is entirely absent, requiring

¢=arctan (

Equation 10 Phase difference relationship where
¢ is the phase difference between adjacent
oscillators,  is oscillation frequency, 7 is the
synaptic delay and K is the coupling strength

separate mechanisms. Their primary utility is
analytical understanding of synchronization
phenomena rather than implementation.

3.2 CPG Network Architectures and Coupling
Schemes

CPG network architectures organize oscillators in
linear chains mirroring spinal cord organization.
Coupling schemes employ reciprocal inhibition
producing anti-phase outputs for opposing joints,
excitatory coupling with delays generating
propagating waves with phase differences
controlled by (Bing et al., 2017):

T
ﬁ) (10)

magnitude. This relationship enables precise
control of phase differences through parameter
adjustment.  Gap  junction  coupling  for
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synchronized patterns represents an alternative
approach using bidirectional electrical coupling.

3.3 Gait Generation and Parameter
Optimization

Serpentine motion emerges naturally from chains
with phase differences between 1.5 to 3 body
waves, directly controlling gait characteristics
through phase relationships (Bing et al., 2017).
Parameter ~ optimization  employs  genetic
algorithms searching high-dimensional fitness
landscapes for maximum locomotion speed and
energy efficiency, particle swarm optimization
coordinating population-based refinement, and
symbiotic  organism  search  incorporating
biological cooperation principles. CPG limitations
include parameter sensitivity requiring extensive
tuning or optimization (Tamura & Kamegawa,
2023), limited adaptation to  unknown
environments  without  sensory  feedback
integration, and difficulty generating non-rhythmic
behaviors such as precision manipulation or rapid
directional changes.

4. LEARNING-BASED APPROACHES

4.1 Reinforcement Learning for Locomotion
Control

Reinforcement Learning formulates locomotion
as a Markov Decision Process where agents learn
policies (control mappings) that maximize
cumulative expected rewards (Qiu et al., 2021).
State space comprises joint angles from encoders
and velocities from differentiation, providing
position and velocity feedback action space is
continuous joint torques or position commands in
the range [-Tnax.Tmax] fOr €ach joint; rewards
combine multiple objectives as R (t)y=r tr,+r,
where r~=v, is forward progress incentive
rewarding velocity in the desired direction,
r.=-a Y| ;| is energy efficiency penalty penalizing
high torques, and r. includes terrain-specific
bonuses rewarding progress on difficult terrain.
This multi-objective reward formulation enables
agents to discover policies balancing competing
objectives faster locomotion versus lower energy
consumption.

Policy gradient methods directly optimize policy
parameters through gradient ascent on the expected
reward objective (Liu et al., 2023Db):

Vo (O)=E [V log 7y (als)O"(s,a)] (an

Equation 11 Policy gradient formula where & are
policy parameters, =, (als) is the probability of
action a given state s, and Q" (s,a) is the expected
return from that action. The gradient points toward
actions that yielded high rewards and away from
actions that yielded low rewards. This elegant
formulation enables on-policy learning the agent

learns from experiences generated under its current
policy.

Proximal Policy  Optimization  achieves
dramatically faster convergence through clipped

objective functions that limit policy updates (Jia &
Ma, 2022):

L (@)=E[min (r(0)4,clip(r(0),1-¢,1+€)4,)] (12)

Equation 12 PPO clipped objective where
1 (O)=my (als,)/my,, (asls,) is the probability ratio
comparing new and old policies, 4, is the estimated
advantage (how much better this action is than
average), and e controls the clipping range. This

prevents the policy from changing too dramatically
in a single update, stabilizing learning. PPO
achieves 10-100x faster convergence than policy
gradient and value iteration methods, enabling
practical application to snake robot control with
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typical  training  requiring  50,000-200,000
simulation steps or 500-2000 real robot episodes
depending on task complexity.

Deep Deterministic Policy Gradient (DDPG)
extends continuous control through actor-critic
architectures where an actor network my(s)
generates continuous actions directly and a critic
network Q ¢(s,a) estimates the value of state-action

pairs (Liuetal., 2021). This enables learning in 20+
dimensional action spaces typical of multi-segment
snakes with simultaneous control of 8-16 joints.
The critic guides the actor toward valuable actions
through gradient. Sample efficiency remains the
primary limitation learning from scratch requires
millions of environment interactions. Domain
randomization addresses this by training on
distributions of simulated environments with
friction coefficients varying +£50%, actuator delays
0-100 ms, sensor noise varying 2-5x baseline, mass
properties £20%, and terrain roughness variations
(Ji et al.,, 2023). Policies trained on diverse

simulators transfer better to real robots despite
performing worse on individual training
environments. Curriculum learning progressively
increases task difficulty; early training on flat
surfaces followed by gradual terrain complexity
improves learning stability and final performance
by 20-30% compared to training only on target
terrain.

4.2 Evolutionary Algorithms and Hybrid CPG-
Learning Architectures

Evolutionary  Algorithms employ genetic
algorithms mutating and recombining candidate
solutions (Tamura & Kamegawa, 2023), particle
swarm optimization coordinating population-based
exploration, and symbiotic organism search
incorporating mutualistic principles (Lewer et al.,
2023). These methods excel at multi-objective
optimization through Pareto dominance concepts
but require significant computational resources.

Figure 3. Fitness convergence curves showing learning efficiency. Hybrid CPG-learning achieves 90% of
final performance with 100-1000x fewer samples than pure learning through structured search space
exploitation.

Hybrid CPG-Learning Architectures integrate
CPG structure with learned parameters,
dramatically reducing learning dimensionality. As
shown in Figure 3 hybrid architectures combine
CPG's real-time feasibility with learned parameter
modulation (Liu et al., 2023a). CPG-ACTOR
reduces parameter count from thousands (pure
neural network) to tens (CPG + modulation layers),
achieving 6x faster training while maintaining
learning benefits (Liu et al, 2025). This
dimensionality reduction dramatically improves
sample efficiency (103-10* samples vs 10°-107 for

pure learning). Contact-aware learning
incorporates tactile feedback through learned
feedback gains modulating CPG parameters (Zhao
et al., 2022), achieving 20-40% performance
improvement on variable terrain while maintaining
real-time feasibility through simple linear feedback
rules rather than complex neural network
inference.

4.3 Neuromorphic Approaches

Neuromorphic Approaches employ spiking
neural networks simulating biological neurons
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through spike timing (Zhang et al., 2025), enabling
neuromorphic  hardware implementation on
platforms like Intel Loihi with 100x energy
reduction compared to digital controllers. Spiking
neural networks encode information as temporal
patterns rather than firing rates, enabling
asynchronous event-driven computation with
intrinsic parallelism.

5. COMPARATIVE ANALYSIS AND
PERFORMANCE EVALUATION

5.1 Performance Metrics and Evaluation
Framework

Performance evaluation requires careful definition
of metrics (Seeja et al., 2022). Locomotion speed is
typically normalized to body-lengths per second to
enable comparison across robots of different sizes
a 0.8 m/s snake 1 meter long achieves 0.8 BL/s
while a 0.4 m/s snake 0.5 meters long also achieves
0.8 BL/s despite different absolute speeds. Energy

efficiency is quantified through cost of transport, a
dimensionless metric enabling comparison across
scales. Stability is measured through variance in
heading angle during steady locomotion lower
variance indicates more stable paths. Terrain
adaptability is quantified through success rate
across different surfaces.

Table 1 Comparative Analysis of Control Methods
presents comprehensive analysis of control
methodologies  across  critical  performance
dimensions (Shi et al., 2025). CPG methods
execute in 1-10 milliseconds per cycle on
microcontrollers, suitable for small embedded
systems. Achieved locomotion speeds range 0.3-
0.8 body-lengths per second on rigid platforms.
Energy efficiency ranges 2.0-3.5 for typical CPG
implementations. CPG methods demonstrate
exceptional robustness across parameter variations;
10-30% parameter perturbations cause negligible
performance degradation.

Table 1. Comparative Analysis of Control Methods

Characteristic CPG-Based Learning-Based Hybrid CPG-
Learning

Real-time High (1-10 ms) Low (50+ ms) High (10-20 ms)

Feasibility

Parameter Tuning | Manual, difficult Automatic Automatic

Sample Efficiency | N/A Low (~10°) High (~108%-10%)

Robustness Moderate-High Varies High

Speed (BL/s) 0.3-0.8 0.5-1.2 0.6-1.0

Energy (CoT) 2.0-3.5 1.5-2.5 1.8-2.8

Learning methods achieve 0.5-1.2 body-lengths
per second through automatic gait discovery
optimizing locomotion for simulation environment
dynamics (Qiu et al., 2021). On simulation,
learning methods surpass hand-tuned CPGs by 20-

50% depending on terrain due to discovering gaits
specifically optimized for that environment's
friction properties and terrain characteristics.
However, sim-to-real transfer reduces this
advantage significantly real-world performance
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typically 20-30% below simulation, whereas CPG
methods transfer with <10% degradation (Ji et al.,
2023). The performance gap occurs because
learning optimizes for simulator dynamics that
don't perfectly match reality. Learning methods
require inference during deployment; typical
neural network inference time 5-50 milliseconds on
embedded GPU (NVIDIA Jetson Nano),
incompatible with real-time control in fast-
changing environments requiring 10 Hz minimum
update rates. This computational requirement
explains why learning-based controllers are
typically relegated to offline motion planning or
vision-based high-level decision making rather
than real-time feedback control.

5.2 Experimental Results across Platforms and
Terrains

Hybrid CPG-learning approaches achieve 0.6-1.0
body-lengths per second while maintaining real-
time feasibility and 30-50% faster training
convergence through dimensionality reduction.
Performance varies substantially across terrain
types, as shown in Figure 4 experimental results
demonstrate that hybrid CPG-learning methods
achieve superior balance between speed, energy
efficiency, and adaptability compared to pure CPG
or pure learning approaches (Shi et al., 2025). The
loaded snake robot (LSR1) successfully handles
complex terrain including grass with vegetation
resistance and uneven surfaces, validating the
practical effectiveness of the control approach
(Liu, Gasoto, Onal, et al., 2020). Hybrid methods
consistently exceed 85% success rate across
diverse terrain types through contact-aware
modulation.

Figure 4. Loaded snake robot (LSR1) performance comparison before and after CPG parameter
optimization showing 25% reduction in motion time across grass and uneven terrain.

Table 2 Performance Summary Across Terrain
Types and Platforms provides comprehensive
performance metrics comparing CPG, learning-

based, and hybrid methods across five distinct
terrain environments. The data demonstrates that
hybrid approaches consistently achieve superior
performance across all terrain types, from rigid
laboratory floors to underwater environments.
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Table 2.Performance Summary across Terrain Types and Platforms

Terrain Type | CPG Success | Learning Hybrid Preferred
Success Success Method

Rigid Floor 95% 98% 99% Hybrid
Granular 65% 2% 85% Hybrid
(Sand)

Rocky/Uneven | 60% 75% 82% Hybrid
Confined Pipes | 90% 85% 92% Hybrid
Underwater 88% 92% 95% Hybrid

On rigid laboratory floors, CPG controllers achieve
smooth, periodic locomotion with minimal
computational overhead. On sandy and granular
substrates where individual contacts vary
unpredictably, contact-aware CPG modulation
improves performance 15-25% through sensory
feedback (Zhao et al., 2022). Soft robot platforms
benefit dramatically from learning due to complex
actuator dynamics (Lu et al., 2024) soft robot
learning often outperforms CPG approaches by 30-
50%.

Industrial applications including inspection robots
(ACM-R5) and search-and-rescue platforms
employ hybrid or conservative CPG approaches
prioritizing reliability (P. Ngamkajornwiwat & N.
Pothita, 2024). The ACM-R5 subsea inspection
platform achieves reliable 0.4 m/s locomotion
despite highly variable environments. Medical
applications employ tightly controlled CPG-based
approaches ensuring predictable, safe behavior.

6. SENSORY INTEGRATION AND TERRAIN
ADAPTATION

Sensory feedback is essential for robust locomotion
in unstructured environments. As shown in Figure
5 the primary concertina locomotion pattern is
achieved through modulating CPG parameters in
response to sensory signals. This gait is particularly
effective in constrained spaces such as pipelines
where the robot leverages discrete contact points
for propulsion. The concertina motion emerges
from the same CPG network with different phase
offsets and amplitude modulations compared to
open-space gaits, demonstrating a unified control
framework for diverse locomotion behaviors. Each
gait exploits distinct environmental interactions:
concertina leverages fixed contact points in
confined spaces enabling efficient navigation
through narrow passages (Li et al., 2019). Sensory
feedback integration enables real-time gait
selection and parameter adaptation through
proprioceptive information from joint angles and
motor currents providing body configuration,
contact  sensors  detecting  environmental
interaction, and vestibular information providing
orientation cues essential during terrain transitions.

Qroe
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Figure 5. Concertina locomotion in pipeline showing body configuration at 4 motion stages (0s, 3s, 5s, 8s).
Head extends while maintaining tail grip, creating forward progression through sequential contact point
dynamics.

6.1 Feedback Mechanisms

Sensory feedback modulates CPG parameters through:

w(O=uyt ) a0 (13)

Equation 13: Sensory feedback modulation
where u,(f) is the modulated tonic input to
oscillator i,u, is baseline input, «, are sensory
coupling gains, and s;**°" are normalized sensor
signals. This multiplicative coupling enables
proportional modulation while maintaining
oscillatory dynamics.

6.2 Contact-Aware Locomotion Control

Contact-aware CPG control demonstrates 20-40%
improvement in traversal success rates across
uneven terrain (Zhao et al., 2022). Sensory
modulation  mechanisms include frequency
adaptation where contact stimulation increases
CPG oscillation frequency enabling faster escape,
amplitude modulation where strong contact signals
reduce movement amplitude enabling cautious
navigation, and phase shifting enabling rapid
directional correction. These mechanisms operate
within biological CPG frameworks through simple
multiplicative or additive modulation of oscillator
parameters, maintaining real-time feasibility.

This sensory integration is particularly valuable for
obstacle-aided locomotion where snakes leverage
environmental features for propulsion (Lim et al.,
2020). A snake encountering a vertical peg can
press against it to gain leverage for forward
progression. Tegotae-inspired mechanisms use
contact feedback to trigger specific motor
responses enabling energy-efficient obstacle
negotiation. Perception-driven approaches employ
forward-facing cameras to detect upcoming
obstacles and plan trajectories leveraging obstacle
positions.

7. RESEARCH GAPS AND CHALLENGES
7.1 Sim-to-Real Transfer Challenges

Sim-to-Real Transfer remains a critical barrier (Ji
et al., 2023). Simulators employ simplified friction
models while real robots exhibit velocity-
dependent friction. Equations 14-15 describe the
friction model mismatch:

ONOIS]
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SN (constant) (14)

Sreal V)N (15)

Equation 14 Simulator friction model assumes
constant friction coefficient regardless of velocity.
Equation 15 Real robot friction model where
friction varies with velocity based on static friction
coefficient x , kinetic friction y,, and characteristic

velocity v, . This mismatch causes controllers
optimized in simulation to perform poorly on real
robots. Actuator responses are idealized while real
servos exhibit delays and saturation (Badran et al.,
2020). Domain randomization improves transfer

CoT=

Equation 16 Cost of transport formula where
E, .1 1S total energy consumed, m is body mass,gis
gravitational acceleration, and d is distance
traveled. This dimensionless metric enables
comparison across robots of different sizes and
masses. Optimization strategies include gearbox
redesign for steady-state efficiency, pulse-width
modulation reducing energy during posture
maintenance, and compliant joints reducing impact
losses. Multi-objective optimization could achieve
30-50% energy reduction.

7.3 Real-Time Sensory Integration

Real-Time Sensory Integration requires
embedding sensory processing and control within
10-100 millisecond cycles (Seeja et al., 2022).
Simple feedback rules integrate in 1-5 ms but lack
sophistication. Learning-based sensory integration

Etotal
m-g-d

success rates from 30-40% to 60-80% at cost of
reduced target environment performance.

7.2 Energy Efficiency Limitations

Energy Efficiency represents a critical practical
limitation (Baysal & Altas, 2020). Biological
snakes achieve cost of transport 0.5-1.0 while
robotic systems achieve 2-5. Cost of transport is
calculated using:

(16)

requires 5-20 ms neural network inference on
embedded systems, approaching cycle time
budgets. Neuromorphic sensory processing using
spiking neural networks promises latency
reduction to 1-2 ms through asynchronous event-
driven computation (Zhang et al., 2025).

7.4 Standardization Issues

Standardization is critically lacking. Table 3
summarizes research gaps and mitigation
strategies. No agreed-upon benchmarks exist;
different papers employ different simulation
environments, robot specifications, and evaluation
metrics. Creating standardized benchmarks would
accelerate progress. The International Organization
for  Standardization  (ISO) has  begun
standardization efforts, but consensus remains
elusive due to diverse application requirements.
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Table 3. Critical Research Gaps and Mitigation Strategies

Research Gap Current ChallengeProposed | Expected Impact
Challenge Solution
Sim-to-Real 20-30% drop Domain Improve success to
randomization 80%+
Energy Efficiency | 2-5CoT Multi-objective Achieve  1.5-2.0
optimization CoT

Sensory Integration | 5-50 ms latency

Neuromorphic

Reduce to <2 ms

hardware
Standardization Incomparable Unified benchmarks | Enable meta-
analysis
Verification Safety proving Formal methods Enable medical
apps

9. FUTURE DIRECTIONS

Future research should prioritize establishing
standardized benchmarking platforms enabling
reproducible comparative evaluation across methods
and platforms. Creating unified benchmark suites
analogous to ImageNet in computer vision would
accelerate progress through enabling meaningful
meta-analysis and reproducible comparisons. Sim-
to-real transfer techniques must reduce domain gap
through careful system identification characterizing
actual friction, actuator delays, and contact dynamics
specific to each platform. Energy-efficient controller
design through multi-objective optimization can
achieve 30-50% efficiency improvements by
balancing speed, power consumption, and stability
within formalized Pareto optimization frameworks.
Unified frameworks integrating CPGs with learning
should exploit structured search spaces while
maintaining learning benefits, enabling scalable
solutions across robot morphologies and application
domains. Neuromorphic implementations on spiking
hardware promise 100x energy reduction through
asynchronous event-driven computation, enabling
truly autonomous operation in power-limited
scenarios.

Bio-hybrid approaches interfacing biological neural
tissues with robotic actuators offer radically different
control paradigms not yet fully explored. Lamprey
spinal cord segments coupled to robotic bodies
demonstrate proof-of-concept; scaling to full-bodied
bio-hybrid systems remains an open challenge
requiring advances in interfacing, control
integration, and biological sustainability. These
systems leverage biological neural plasticity and
adaptation while providing robotic mobility,
potentially unlocking control capabilities currently
impossible with artificial systems. The convergence
of neuroscience and robotics through bio-hybrid
systems represents a frontier with profound
implications for understanding nervous system
function and developing truly adaptive robotic
systems.

Snake robot research will increasingly focus on
embodied Al principles where control emerges from
agent-environment interaction rather than explicit
programming. This paradigm shift requires
rethinking how we design learning algorithms,
incorporate biological inspiration, and evaluate robot
performance. As hardware matures and control
methods advance, snake robots will transition from
laboratory platforms to practical tools with broad
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deployment. Applications will expand from current
domains  (disaster  response, infrastructure
inspection, environmental exploration) to medical
robotics, space exploration (traversing asteroid
surfaces and planetary caves), and underwater
research.

The integration of advancing sensors (fiber-optic
gyroscopes providing inertial measurement without
drift, distributed pressure sensors enabling obstacle
detection, bio-inspired flow sensors enabling
ambient awareness), improved actuators (artificial
muscles providing compliant actuation, electroactive
polymers enabling programmable stiffness), and
sophisticated controllers combining biological
inspiration with machine learning positions snake
robots as a transformative platform. This platform
will serve dual purposes: advancing our
understanding of how biological systems achieve
robust locomotion across complex environments,
and developing adaptive robotic systems capable of
autonomous operation in unstructured, human-
environments where conventional platforms fail.

8. CONCLUSIONS

Snake robot locomotion control has matured through
two complementary paradigms. CPG-based methods
offer biological inspiration, real-time feasibility on
embedded systems, and interpretability through
direct neural correspondence. Learning-based
approaches enable automatic gait discovery without
manual tuning, excel at multi-objective optimization
balancing speed and efficiency, and adapt online to
unknown environments. Hybrid architectures
combining CPG structure with learned parameters
represent the most promising direction, balancing
biological plausibility with adaptive capability while
maintaining computational efficiency and real-time
performance.

The comparative analysis across platforms and
terrains reveals that no single methodology
dominates across all application domains. CPG-
based controllers excel in resource-constrained
embedded systems and safety-critical applications
where interpretability and robustness are paramount.
Learning-based approaches maximize performance
when computational resources are available and sim-
to-real transfer can be properly addressed through
domain randomization and careful system

identification. Hybrid CPG-learning architectures
emerge as the optimal choice for most practical
applications, leveraging CPG's real-time feasibility
and biological structure while incorporating
learning's adaptive capabilities and multi-objective
optimization.

Critical research gaps identified throughout this
review sim-to-real transfer challenges, energy
efficiency limitations, real-time sensory integration
constraints, and standardization fragmentation
establish the agenda for advancing the field.
Addressing these gaps requires not incremental
improvements but fundamental advances in how we
conceptualize the integration of neural structures,
learning mechanisms, and embodied robot
morphologies. The field stands at an inflection point
where  mature understanding of individual
methodologies enables integration into more
sophisticated systems.
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