

Measure Preserving Transformations: Theory, Examples and Applications

OCHONOGOR Napoleon Ifeakachukwu & OKONYE Angela Okwuolise

Department of Mathematics, Dennis Osadebay University, Asaba, Delta State, Nigeria

Received: 20.11.2025 / Accepted: 11.12.2025 / Published: 02.01.2026

***Corresponding Author:** OCHONOGOR Napoleon Ifeakachukwu

DOI: [10.5281/zenodo.18133396](https://doi.org/10.5281/zenodo.18133396)

Abstract

Meta-analysis Article

Consider a measure preserving transformation T from a measure space to itself. This paper presents a comprehensive study of measure preserving transformations with enhanced theoretical foundations and practical examples. We first demonstrate that the identity map defined on a measure space is a measure preserving transformation. We examined the case where X is the set \mathbb{Z} of all integers with \mathcal{B} being the sigma algebra of all subsets of X , and show that under the counting measure μ , the transformation T defined by $T(w) = w + 1$ for $w \in X$ constitutes an invertible measure-preserving ergodic transformation. Additionally, we prove that the set of all eigenvalues (spectrum) of an ergodic automorphism T of a probability space forms a subgroup of the unit circle \mathbb{T} . The paper is enriched with additional examples including rotations on the circle, shift transformations, and applications to dynamical systems.

Keywords: Ergodic theory, Automorphisms, Eigenvalues, Dynamical systems.

Copyright © 2026 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).

1.0 INTRODUCTION

Ergodic Theory emerged in the late 19th and early 20th centuries through the pioneering work of Henri Poincaré, who approached differential equations from a novel perspective focusing on the entirety of solution sets rather than individual solutions [1,2]. This paradigm shift led to the development of phase space theory and the qualitative analysis of differential equations [3,4].

The field gained significant momentum through contributions from Boltzmann, Gibbs, and later Birkhoff, who established the mathematical foundations we recognize today [5]. Statistical

mechanics provided crucial inspiration, particularly through the ergodic hypothesis, which concerns the equivalence of phase averages and time averages in physical systems [6,7]. The mathematical formalization of ergodic theory is generally attributed to G.D. Birkhoff's proof of the pointwise ergodic theorem in 1931, which established ergodic theory as a rigorous mathematical discipline [8].

1.1 Historical Development and Modern Applications

The development of measure theory by Henri Lebesgue in the early 1900s provided the necessary mathematical framework for ergodic theory [9].

Citation: Ochonogor, N. I., & Okonye, A. O. (2026). Measure preserving transformations: Theory, examples and applications. *Global Academic and Scientific Journal of Multidisciplinary Studies (GASJMS)*, 4(1), 12-17.

Subsequently, von Neumann's mean ergodic theorem (1932) complemented Birkhoff's pointwise result, establishing both L^2 and almost everywhere convergence [10]. These foundational results paved the way for modern applications in number theory, probability theory, and dynamical systems.

Contemporary applications of measure preserving transformations extend to diverse fields including:

- (a) Information theory and coding theory [11]
- (b) Quantum mechanics and statistical physics [12]
- (c) Number theory and Diophantine approximation [13]
- (d) Computer science and algorithm analysis [14]

2.0 PRELIMINARIES AND LITERATURE REVIEW

2.1 Fundamental Definitions

Definition 2.1: A measure space is a non-empty set X together with a specified sigma algebra β of subsets of X and a measure μ defined on that algebra, forming the triple (X, β, μ) [15,16].

Remark 2.2:

- (i) A sigma algebra β is a collection of sets closed under complements and countable unions [17].
- (ii) A measure μ is a non-negative, possibly infinite, countably additive function [18].
- (iii) Sets in the domain of measure μ are called measurable subsets of X .

Definition 2.3: A single-valued function T from a measure space (X_1, β_1, μ_1) into a measure space (X_2, β_2, μ_2) is said to be:

- (i) **Measurable transformation** if $T^{-1}(\beta_2) \subseteq \beta_1$, meaning $T^{-1}(A) \in \beta_1$ for each $A \in \beta_2$.

(ii) **Measure preserving transformation** if T is measurable and $\mu_1(T^{-1}(A)) = \mu_2(A)$ for each $A \in \beta_2$ [19].

(iii) **Invertible transformation** if T is measurable, bijective, and T^{-1} is also measurable [20].

(iv) **Endomorphism** if T is a measure preserving transformation where both measure spaces coincide.

(v) **Automorphism** if T is an invertible measure-preserving transformation.

2.2 Extended Literature Review

The study of measure preserving transformations has evolved significantly since Poincaré's initial work. Koopman and von Neumann (1932) introduced the operator-theoretic approach, associating with each measure preserving transformation T a unitary operator U_T on $L^2(X, \mu)$ defined by $U_T f(x) = f(T(x))$ [21]. This approach revolutionized the field by connecting ergodic theory with functional analysis.

Halmos (1956) provided comprehensive coverage of measure preserving transformations in his seminal work "Lectures on Ergodic Theory" [22]. His contributions include the classification of automorphisms and the development of entropy theory. Simultaneously, Rohlin (1961) introduced fundamental concepts such as the Rohlin lemma and natural extensions [23].

More recent developments include:

- **Ornstein's Isomorphism Theory:** Ornstein (1970) proved that Bernoulli shifts with the same entropy are isomorphic [24].

Ratner's Theorems: Marina Ratner's work on unipotent flows has profound implications for homogeneous dynamics [25].

Modern Applications: Contemporary research focuses on applications to number theory, particularly in proving results about equidistribution and uniform distribution modulo 1 [26].

3.0 MAIN RESULTS

3.1 Spectral Theory of Automorphisms

Definition 3.1: A linear operator $U: H \rightarrow H$ (H a complex Hilbert space) is unitary if:

- (i) U is bijective, and
- (ii) $\langle Uf, Ug \rangle = \langle f, g \rangle \forall f, g \in H$.

Definition 3.2: A complex number λ is an eigenvalue of automorphism $T: (X, \beta, \mu) \rightarrow (X, \beta, \mu)$ if there exists $f \in L^2(X, \beta, \mu)$ with $f \neq 0$ such that $U_T f = \lambda f \Rightarrow f \circ T = \lambda f$

Definition 3.3: An automorphism T has discrete spectrum if the eigenvectors span $L^2(X, \beta, \mu)$.

Theorem 3.1: Let T be an ergodic automorphism of probability space (X, β, μ) . Then the set E of all eigenvalues forms a subgroup of the unit circle group $G = \{z \in \mathbb{C} : |z| = 1\}$.

Proof: Let E denote the set of all eigenvalues of U_T . Since 1 is always an eigenvalue (with constant functions as eigenvectors), E is non-empty.

Let $\lambda, \alpha \in E$ with corresponding eigenvectors $f, g \in L^2(X)$ respectively, where $f, g \neq 0$. Then $U_T f = \lambda f$ and $U_T g = \alpha g$.

Let $h = \frac{1}{g}$. So $U_T(f \cdot h) \circ T = (f \cdot h) \circ T = (h \cdot f) \circ T = (h \cdot T) \circ (f \cdot T)$

Since $|\alpha| = 1$, we have $\alpha^{-1} = \bar{\alpha}$, and

$$U_T\left(\frac{f}{g}\right) = U_T(fh) = U_T f \cdot U_T h = \lambda f \cdot \alpha h = \lambda \bar{\alpha} (hf) = \lambda \bar{\alpha} \left(\frac{f}{g}\right)$$

Since $fh \neq 0$ (as $f, g \neq 0$), we have $\lambda \bar{\alpha} \in E$, which means $\lambda \alpha^{-1} \in E$.

For closure under multiplication: $U_T(fg) = U_T f \cdot U_T g = \lambda f \cdot \alpha g = \lambda \alpha (fg)$, so $\lambda \alpha \in E$.

$\therefore E$ forms a subgroup of (G, \bullet) \square

3.2 Enhanced Examples of Measure Preserving Transformations

3.2.1 Identity Transformation

Theorem 3.2: The identity map $T: x \rightarrow x$ on any measure space (X, β, μ) is measure preserving.

Proof: For any $A \in \beta$, we have $T^{-1}(A) = A$, hence $\mu(T^{-1}(A)) = \mu(A)$. \square

3.2.2 Translation on Integers

Theorem 3.3: Let $X = \mathbb{Z}$, $\beta = 2^{\mathbb{Z}}$ (power set), μ = counting measure, and $T(w) = w+1$. Then T is an invertible measure-preserving ergodic transformation.

Proof:

Invertibility: $T(w) = w+1$, $T^{-1}(x) = x-1$ is well-defined and measurable.

Measure preservation: For any $A \subseteq \mathbb{I}$, $|T^{-1}(A)| = |A - 1| = |A|$.

Ergodicity: If A is T -invariant ($T^{-1}A = A$), then $A + 1 = A$, implying $A = \mathbb{I}$ or $A = \emptyset$. \square

3.2.3 Circle Rotation

Example 3.1: Let $X = [0,1]$, with addition modulo 1, β = Borel σ -algebra, μ = Lebesgue measure. For irrational α , define $T(x) = x + \alpha \pmod{1}$. Then T is an ergodic measure preserving transformation [27].

The transformation T_α is ergodic if and only if α is irrational. This classical result demonstrates the deep connection between number theory and ergodic theory.

3.2.4 Bernoulli Shifts

Example 3.2: Let $X = (0,1)^\mathbb{Z}$, equipped with the product topology and product measure $\mu = (p, 1-p)^\mathbb{Z}$ where $0 < p < 1$. The left shift $\sigma: (x_n) \rightarrow (x_{n+1})$ is measure preserving and mixing [28].

Bernoulli shifts provide fundamental examples in ergodic theory and have applications in coding theory and information theory.

3.2.5 Gauss Map

Example 3.3: The Gauss map $T: (0,1) \rightarrow (0,1)$ defined by $T_x = \frac{1}{x}$ (fractional part of x) for $x \neq 0$ and $T(0) = 0$, with respect to the Gauss measure $d\mu = \left(\frac{1}{\log 2}\right) \left(\frac{dx}{1+x}\right)$, is measure preserving and ergodic [29].

This transformation is fundamental in the theory of continued fractions and has applications in number theory.

3.2.6 Tent Map

Example 3.4: The tent map $T: (0,1) \rightarrow (0,1)$ defined by:

$$T(x) = \begin{cases} 2x & \text{if } 0 \leq x \leq \frac{1}{2}, \\ -2x + 2 & \text{if } 0 < x \leq 1. \end{cases}$$

is measure preserving with respect to Lebesgue measure and exhibits chaotic behavior [30].

3.2.7 Arnold's Cat Map

Example 3.5: On the 2-torus $T^2 = \frac{R^2}{\mathbb{I}^2}$, the Arnold cat map is defined by the matrix $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$. The transformation $T(x, y) = A(x, y) \pmod{1}$ preserves the Haar measure and is ergodic [31].

4.0 APPLICATIONS AND RECENT DEVELOPMENTS

4.1 Applications to Number Theory

Measure preserving transformations have found remarkable applications in number theory, particularly in:

Equidistribution Theory: Weyl's equidistribution theorem can be proved using ergodic theory methods [32].

Diophantine Approximation: The theory of continued fractions benefits from ergodic theoretic analysis of the Gauss map [33].

Prime Number Theory: Connections between ergodic theory and the distribution of primes have been explored [34].

4.2 Modern Computational Applications

Recent developments include:

Algorithmic Information Theory: Measure preserving transformations provide models for optimal compression [35].

Cryptography: Chaotic dynamical systems based on measure preserving transformations are used in encryption schemes [36].

Monte Carlo Methods: Ergodic properties ensure convergence of numerical integration schemes [37].

5.0 CONCLUSION

This paper has provided a comprehensive treatment of measure preserving transformations, extending beyond the basic theory to include modern applications and recent developments. We have demonstrated fundamental properties including the subgroup structure of eigenvalues for ergodic automorphisms, and provided diverse examples ranging from classical rotations to modern applications in chaos theory.

The field continues to evolve with connections to other areas of mathematics and applications in computer science, physics, and engineering. Future research directions include:

- (a) Applications to machine learning and data analysis
- (b) Connections to algebraic geometry and arithmetic dynamics
- (c) Development of computational tools for analyzing complex dynamical systems

ACKNOWLEDGEMENTS

The authors sincerely appreciate the constructive comments of the reviewers, which have significantly improved the quality and scope of this paper. We also acknowledge the support of the Department of Mathematics at Dennis Osadebay University.

REFERENCES

- [1] H. Poincaré, "Les Méthodes Nouvelles de la Mécanique Céleste," Gauthier-Villars, Paris, 1892-1899.
- [2] G.D. Birkhoff, "Proof of the ergodic theorem," Proc. Nat. Acad. Sci. USA, vol. 17, pp. 656-660, 1931.
- [3] V.I. Arnold, "Mathematical Methods of Classical Mechanics," 2nd ed., Springer-Verlag, New York, 1989.
- [4] L. Barreira and Y. Pesin, "Introduction to Smooth Ergodic Theory," American Mathematical Society, Providence, RI, 2013.
- [5] J. von Neumann, "Proof of the quasi-ergodic hypothesis," Proc. Nat. Acad. Sci. USA, vol. 18, pp. 70-82, 1932.
- [6] L. Boltzmann, "Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen," Wiener Berichte, vol. 66, pp. 275-370, 1872.
- [7] J.W. Gibbs, "Elementary Principles in Statistical Mechanics," Yale University Press, New Haven, 1902.
- [8] K. Petersen, "Ergodic Theory," Cambridge University Press, Cambridge, 1983.
- [9] H. Lebesgue, "Intégrale, longueur, aire," Ann. Mat. Pura Appl., vol. 7, pp. 231-359, 1902.
- [10] J. von Neumann, "Zur Operatorenmethode in der klassischen Mechanik," Ann. of Math., vol. 33, pp. 587-642, 1932.
- [11] T.M. Cover and J.A. Thomas, "Elements of Information Theory," 2nd ed., Wiley-Interscience, New York, 2006.
- [12] V. Jakšić and C.-A. Pillet, "On entropy production in quantum statistical mechanics," Commun. Math. Phys., vol. 217, pp. 285-293, 2001.
- [13] Y. Bugeaud, "Approximation by Algebraic Numbers," Cambridge University Press, Cambridge, 2004.

[14] D.E. Knuth, "The Art of Computer Programming, Volume 2: Seminumerical Algorithms," 3rd ed., Addison-Wesley, Reading, MA, 1998.

[15] P.R. Halmos, "Measure Theory," Van Nostrand, Princeton, NJ, 1950.

[16] D.L. Cohn, "Measure Theory," 2nd ed., Birkhäuser, Boston, 2013.

[17] R.M. Dudley, "Real Analysis and Probability," 2nd ed., Cambridge University Press, Cambridge, 2002.

[18] G. Folland, "Real Analysis: Modern Techniques and Their Applications," 2nd ed., Wiley-Interscience, New York, 1999.

[19] K. Yosida, "Functional Analysis," 6th ed., Springer-Verlag, Berlin, 1980.

[20] W. Rudin, "Real and Complex Analysis," 3rd ed., McGraw-Hill, New York, 1987.

[21] B.O. Koopman and J. von Neumann, "Dynamical systems of continuous spectra," Proc. Nat. Acad. Sci. USA, vol. 18, pp. 255-263, 1932.

[22] P.R. Halmos, "Lectures on Ergodic Theory," Mathematical Society of Japan, Tokyo, 1956.

[23] V.A. Rohlin, "Exact endomorphisms of a Lebesgue space," Izv. Akad. Nauk SSSR Ser. Mat., vol. 25, pp. 499-530, 1961.

[24] D. Ornstein, "Bernoulli shifts with the same entropy are isomorphic," Adv. Math., vol. 4, pp. 337-352, 1970.

[25] M. Ratner, "On Raghunathan's measure conjecture," Ann. of Math., vol. 134, pp. 545-607, 1991.

[26] H. Weyl, "Über die Gleichverteilung von Zahlen mod Eins," Math. Ann., vol. 77, pp. 313-352, 1916.

[27] I.P. Cornfeld, S.V. Fomin, and Ya.G. Sinai, "Ergodic Theory," Springer-Verlag, New York, 1982.

[28] P. Shields, "The Theory of Bernoulli Shifts," University of Chicago Press, Chicago, 1973.

[29] R. Mañé, "Ergodic Theory and Differentiable Dynamics," Springer-Verlag, Berlin, 1987.

[30] R.L. Devaney, "An Introduction to Chaotic Dynamical Systems," 2nd ed., Addison-Wesley, Redwood City, CA, 1989.

[31] V.I. Arnold and A. Avez, "Ergodic Problems of Classical Mechanics," Benjamin, New York, 1968.

[32] L. Kuipers and H. Niederreiter, "Uniform Distribution of Sequences," Wiley-Interscience, New York, 1974.

[33] A.Y. Khintchine, "Continued Fractions," University of Chicago Press, Chicago, 1964.

[34] H. Iwaniec and E. Kowalski, "Analytic Number Theory," American Mathematical Society, Providence, RI, 2004.

[35] M. Li and P. Vitányi, "An Introduction to Kolmogorov Complexity and Its Applications," 3rd ed., Springer-Verlag, New York, 2008.

[36] G. Chen and X. Dong, "From Chaos to Order: Methodologies, Perspectives and Applications," World Scientific, Singapore, 1998.

[37] J.M. Hammersley and D.C. Handscomb, "Monte Carlo Methods," Methuen, London, 1964.

