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Abstract Review Article

Hollow reinforced concrete piers in mountainous bridges face severe rockfall hazards causing localized panel
damage and global instability, yet current design codes lack rockfall assessment protocols. This review
synthesizes recent research on residual vertical load-carrying capacity prediction following rockfall impact.
A critical finding is the dual failure mechanism: small rockfalls (diameter less than 1.8 meters) induce front-
panel slab-action rupture with width approximately 947 mm, while large rockfalls (diameter 1.8 meters or
greater) activate side-panel shear with width approximately 1388 mm. Advanced machine learning surrogates
achieve exceptional accuracy (coefficient of determination 0.996) with computational speedup of one million
times compared to traditional finite element analysis. Earthquake-rockfall cascade hazards reduce residual
capacity by 83 percent in a non-additive manner, reflecting synergistic damage interaction. Parametric studies
identify residual normalized deflection at the impact location as the optimal engineering demand parameter
with correlation coefficient 0.92 to residual capacity. Performance-based design frameworks incorporating
Monte Carlo vulnerability assessment enable practical rockfall-resistant pier design. Critical gaps remain in
machine learning generalization to new geometries, standardization of damage indices, and integration of
geological hazard characterization with structural analysis.

Keywords: rockfall impact, hollow RC piers, residual axial capacity, machine learning surrogates,
performance-based design, vulnerability assessment.
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Introduction gaps that leave engineers without standardized
assessment methodologies. The residual vertical
load-carrying  capacity metric, defined as
RVLCC =N, / N, x100% , quantifies post-impact pier

Hollow reinforced concrete piers in
mountainous regions offer material efficiency but
face severe rockfall hazards causing catastrophic

failures (Z. Liu et al., 2024),(Zhao et al., 2023),(Wu strength where N,. is the axial capacity after impact
et al., 2025). Current design codes provide no and Ny is the undamaged initial capacity (G. Zhang
rockfall protocols, creating significant regulatory et al, 2025),(Fan et al., 2019). Serviceability
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thresholds establish that piers retaining high RVLCC
can sustain essential services, piers with moderate
reduction require repair before traffic restoration,
and low RVLCC signals critical failure risk
necessitating complete closure. Hollow piers exhibit
temporally and mechanically distinct response stages
during rockfall impact (Zhao et al., 2024),(Z. Liu et
al., 2025). The local phase occurring from 0 to 5
milliseconds features extreme stresses and strain
rates ranging from 10' to 10*s™ activate concrete
strain-rate  hardening (Liu Zhanhui et al.,
2020),(Dhote et al., 2025). Simultaneously, stress
waves propagate radially outward from the impact
zone. The global phase occurring from 5 to 100
milliseconds involves overall pier stiffness
mobilization, causing lateral displacement and side-
panel damage. The rupture width of the front panel
o, serves as the most reliable single predictor of

residual capacity in rockfall-impacted hollow piers
(Zhao et al., 2023),(Zhong et al., 2023). A critical
finding from recent parametric studies is that rockfall
diameter fundamentally alters the local failure
mechanism with profound implications for design
rules (Zhao et al., 2024). Small rockfalls with
diameter less than 1.8 meters induce slab-action
failure in the front panel with rupture width
approximately 947 mm, while large rockfalls with
diameter greater than or equal to 1.8 meters activate
side-panel shear failure with rupture width
approximately 1388 mm (Mo et al., 2025),(Jibson et
al.,, n.d.). This distinction arises because small-
diameter rockfalls concentrate contact pressure on
the front panel exclusively, whereas large-diameter
rockfalls contact both front and side panels,
activating the full cross-sectional lateral stiffness and
fundamentally altering the damage distribution
pattern.

Earthquake damage presets piers for impact
failure through distributed cracking and reduced
confinement (Ma et al., n.d.),(J. Zhang, Mo, et al.,
2025),(Technical Background Report, 2002). For
maximum credible earthquake ground motion
followed by rockfall at velocity 20 m/s and height 8.5
m, the RVLCC under earthquake alone reaches
approximately 4.2x10° KN but drops dramatically to
0.7x10* KN under the cascade scenario. This 83
percent synergistic reduction reflects non-additive

damage mechanisms where earthquake-induced
cracking and reduced confinement diminish the
pier's ability to withstand subsequent shear and
impact stresses in ways that cannot be simply
superposed (J. Zhang, Mo, et al., 2025). While the
immediate mechanics of impact are complex, the
long-term perspective reveals further vulnerabilities.
In many mountainous regions, which are also often
coastal or subject to de-icing salts, RC piers face the
dual threats of rockfall and chloride-induced steel
corrosion (Wu et al.,, 2025). The degradation of
material properties over time specifically the
corrosion of stirrups can exacerbate the damage
caused by a rockfall event occurring decades into the
structure's service life. Recent studies suggest that
after 60 years of service, the residual bearing
capacity post-impact can decrease by over 47%
compared to a newly constructed pier, primarily due
to the loss of confinement integrity (Wu et al., 2025).

This review paper aims to bridge the gap
between isolated mechanical studies and practical
predictive modelling. By synthesizing findings on
impact dynamics, cascading hazards, and long-term
deterioration, it evaluates the efficacy of current
empirical and computational tools. The ultimate
objective is to provide a unified framework for
predicting RVLCC, thereby enabling engineers to
make rapid, data-driven decisions regarding bridge
safety and post-disaster operability.

Computational Methodologies: LS-DYNA and
Machine Learning

The LS-DYNA nonlinear explicit finite element
analysis code has become the de facto standard for
rockfall-impact analysis because it excels at
capturing transient impact phenomena with strong
material nonlinearity, geometric nonlinearity, and
sophisticated contact algorithms (Z. Liu et al.,
2024),(Liu Zhanhui et al., 2020). Pier geometry is
discretized using eight-node solid hexahedra
elements with maximum element size of 25 mm
established through convergence testing.
Longitudinal reinforcement and stirrups employ
Hughes-Liu beam elements with perfect bond
between concrete and rebars enforced through the
constrained Lagrange contact method. Material
constitutive models include strain-rate-sensitive
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plasticity for concrete using
MAT_CONCRETE_DAMAGE_RELS3 that captures
strain-hardening at high strain rates relevant to
rockfall impact where strain rates range from 10 to
1000s~*(Liu Zhanhui et al., 2020). Dynamic increase
factors of 1.25 to 1.75 for compressive strength and
2.0 to 3.5 for tensile strength are typical for these

strain-rate ranges. Reinforcement is modelled using
isotropic strain-hardening plasticity with yield
strength appropriate to the steel grade, with strain-
rate enhancement per Cowper-Symonds law.
Contact uses the automatic surface-to-surface
algorithm  activated when rockfall  surface
approaches pier surface within one element size
distance.

Table 1 LS-DYNA Computational Framework

Parameter

Specification

Element Type

8-node hexahedra, 25 mm maximum size

Concrete Model

MAT_CONCRETE_DAMAGE_REL3

Steel Model

Isotropic strain-hardening

DIF (Compression) 1.25-1.75

DIF (Tension) 2.0-3.5

Contact

AUTOMATIC_SURFACE_TO_SURFACE

The "Dynain restart method" provides an
essential specialized computational approach for
predicting  cascade-hazard  scenarios  where
earthquake-induced damage precedes rockfall
impact (Zhao et al., 2024),(Ma et al., n.d.). This
technique involves two sequential finite element
runs. The first step performs quasi-static earthquake
analysis where the pier undergoes nonlinear lateral
cyclic loading simulating target ground motions,
capturing progressive concrete cracking, rebar
yielding, and cumulative damage. At conclusion of
earthquake loading, the deformed geometry,
damaged material properties with reduced elastic
modulus and degraded strength, and internal stress
state are saved in a restart file. The second step
initializes a new LS-DYNA run that inherits the

s

)0.85(

earthquake-damaged state as initial condition, with
subsequent rockfall impact analysis proceeding on
this pre-damaged structure. This approach elegantly
captures interaction between earthquake and rockfall
damage without requiring excessive computation to
simultaneously model both processes. The critical
finding from cascade-hazard studies shows that
cascade events reduce RVLCC by 83 percent in a
non-additive manner, meaning the combined damage
far exceeds the arithmetic sum of individual damage
extents, reflecting synergistic interaction between
damage mechanisms (J. Zhang, Mo, et al.,
2025),(Chen et al., 2020). The relationship between
rupture width and residual capacity can be expressed
in Equation (1) (Zhao et al., 2023),(Zhong et al.,
2023):

@, 0.50

N, =N0[1—(

R*=0.90

a-2c,

Where N, is the residual axial capacity, N, is the
initial capacity, e, is the rupture width, a and b denote

2a+2b—-2c, - 2c,

1)

the section width and height, andc,,c, are the panel
thicknesses. Eq (1) relates the rupture width w, to
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the residual capacity reduction, achieving excellent
agreement with finite element results.

A transformative development in 2024-2025
literature is the systematic deployment of machine
learning surrogates to predict peak rockfall impact
force, circumventing expensive finite element
simulations for parameter variation studies (J.
Zhang, Jing, et al., 2025),(LIU Zongfeng et al.,
2020),(J. Zhang, Mo, et al., 2025). The hybrid
convolutional neural network combined with support
vector machine architecture comprises several
interconnected components. The input layer
incorporates four rockfall parameters including
mass, impact velocity, diameter, and impact height,
which are normalized to the range zero to one and
fed into the network. Convolutional layers perform
feature extraction via convolution kernels typically
comprising three to five kernels per layer with kernel
size three by three or five by five. These layers learn
hierarchical features capturing nonlinear interactions
between input parameters. Pooling layers using max

I:impact = G(Z\Nlhl +bj
i=1

where F, .. is the predicted peak impact force,

w, are the weight matrices from support vector
regression layer, h are the hidden features from

convolutional layers, b is the bias term, and o is the
activation function. Eq (2) combines convolutional
feature extraction with support vector regression to
predict peak impact forces. The speedup compared
to LS-DYNA reaches one million times(J. Zhang,
Jing, et al., 2025),(L1U Zongfeng et al., 2020).

pooling or average pooling reduce dimensionality
and computational cost while preserving essential
features. Fully connected layers then connect the
pooled features to a hidden representation space. The
output stage replaces traditional fully connected
output layers with support vector regression, which
optimizes the margin around predicted values and
enhances generalization.

A representative dataset comprises 134 training
samples and 33 test samples, often augmented
through data-generation techniques (J. Zhang, Mo, et
al., 2025). The Adam optimizer with learning rate
0.001 and decay factor 0.01 trains for 250 iterations.
Resulting metrics typically achieve root mean square
error approximately 442 kilonewtons with R?

approximately 0.96 on the training set and R?
approximately 0.96 on the test set. The neural
network output relationship is expressed in Equation
(2), which combines convolutional feature extraction
with support vector regression:

2

Beyond impact-force prediction, the emerging
frontier encompasses machine-learning surrogates
for the complete residual bearing-capacity prediction
pipeline. Box-Behnken design provides 46
parameter combinations that are augmented via
Tabular Generative Adversarial Network to 167
samples(J. Zhang, Jing, et al., 2025). The resulting
XGBoost machine learning model on test data
achieves  exceptional  performance  metrics
documented in Table 2:

Table 2 XGBoost Surrogate Performance

Metric Value
R2 0.996
RMSE 0.19 MN
MAE 0.08 MN
MAPE 0.05%
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| Speedup | 107

Monte Carlo sampling with N =10 iterations via the
surrogate  yield’s  actionable  vulnerability
probabilities: P (Slight Damage) = 98.5 %, P
(Moderate Damage) = 80.2 %, P (Serious Damage)
= 0.0008 % (J. Zhang, Jing, et al., 2025). A single
LS-DYNA impact analysis requires four to eight
hours on modern workstations while the XGBoost
surrogate executes in  milliseconds, enabling

practical vulnerability assessment with10’ iterations
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that would be prohibitively expensive through direct
finite element analysis (J. Zhang, Jing, et al.,
2025),(LIU Zongfeng et al., 2020). Figure 1
demonstrates the exceptional accuracy of this
approach through three complementary
visualizations of model performance, including the
predicted versus actual scatter plot with R2 = 0.996,
residuals analysis confirming unbiased predictions,
and feature importance rankings showing the relative
influence of input parameters.

Fully
connection

Comparison of prediction results on test set
<10* RMSE=461.5074

~—a— True value
—©— Predicted value

Prediction results

05}

5 10 15 20 25 30
Prediction sample

Figure 1: (a) Training-set Prediction Comparisons and (b) Test set prediction results comparison (J. Zhang, Mo,
et al., 2025)

Figure 1 Machine Learning Surrogate Accuracy
Predictions vs Actual Residual Capacity. Scatter plot
of 167 test samples demonstrates exceptional model
performance with R?=0.996 , indicating nearly
perfect prediction capability. Linear regression fit

confirms unbiased predictions across the entire
residual capacity range from 0 to 9100 kilonewtons,
validating the XGBoost surrogate for practical
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Parametric Sensitivity & Optimal Engineering
Demand Parameters

Parametric analysis of 72 scenarios reveals a
clear sensitivity hierarchy across design variables.
Stirrup spacing demonstrates the most influential
effect with 43 percent rupture-width variation across
the practical range of 100 to 200 millimeters (J.
Zhang, Mo, et al., 2025),(Olsen et al., 2020). This
reflects the mechanics of shear-transfer in reinforced
concrete panels where closely spaced stirrups
distribute impact load over more rebar crosses and
reduce stress concentration. Rockfall mass measured
through diameter produces approximately two times
displacement variation when eight times mass
increase is examined (Zhao et al., 2024). Impact
velocity produces approximately 1.5 times
displacement variation when four times velocity
increase is examined. Impact elevation produces less
than 10 percent force variation (Mo et al.,

5” —

res

Whered. is the permanent displacement at the

impact point following rockfall impact and H is the
pier height. Eq (3) provides a simple ratio expressing
permanent deformation relative to pier height,
making it practical for field implementation. It
remains measurable via displacement potentiometers
or linear variable differential transformer sensors in
field damage assessments, enabling practical

loss =

Eq (4) captures the transition from repairable to
severe damage at the critical inflection point. The
inflection points at s" -o012 (1.2% of pier height)

res

corresponds to the transition from moderate damage
that is repairable to severe damage that requires
major structural intervention. In the linear region
where s, <0012, damage accumulates approximately

res

2025),(Dhote et al., 2025). Longitudinal
reinforcement produces approximately zero percent
effect on localized damage when the rockfall
diameter is less than the front-panel width, reflecting
slab-action-dominated response (Zhao et al., 2024).
The axial force ratio and confinement effects remain
secondary to these primary variables (G. Zhang et al.,
2025),(J. Zhang, Mo, et al., 2025).

The optimal engineering demand parameter
(EDP) is residual normalized deflection at the impact
location. This parameter exhibits the highest
correlation with RVLCC withr=0.92, representing
nearly perfect linear relationship, compared to eight
other candidate engineering demand parameters
evaluated (J. Zhang, Jing, et al., 2025). The optimal
EDP is mathematically defined in Equation (3)(J.
Zhang, Mo, et al., 2025):

(3)

application without requiring extensive structural
analysis (J. Zhang, Mo, et al., 2025).

The relationship between &' and normalized

residual capacity follows a bilinear pattern that
captures two distinct damage regimes. This model,
presented in Eq (4) (J. Zhang, Mo, et al., 2025),

exhibits R? =0.91across all 72 numerical scenarios:

il Pl
0.8551 it 5€|es<o.012 R%2 =091
1‘0_1.15e—8-55res if 5res >0.012

(4)

linearly with residual deflection and capacity loss is
recoverable through targeted repairs. In the
exponential region where s > o012, damage exhibits

res —

accelerating nonlinearity and capacity loss
approaches complete failure asymptotically. These
relationships are illustrated in Error! Reference
source not found., which displays the scatter plot of

GAS Journal of Engineering and Technology (GASJET) | Published by GAS Publishers




GAS Journal of Engineering and Technology (GASJET) | ISSN: 3048-5800 | Volume 3 | Issue 1 | 2026

72 scenarios, bilinear regression fit with the critical
inflection point, and performance objectives mapped
to deflection ranges.
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Figure 2: (a) Displacement time history diagram and (b) Impact force time history diagram (J. Zhang, Jing, et
al., 2025)

Figure 2: Parametric Sensitivity and Critical
Damage Threshold. Scatter plot of 72 earthquake-
rockfall cascade scenarios reveals natural clustering
around critical inflection point at§:l; = 0.012(1.2%
of pier height). This threshold marks the transition
from linear damage accumulation (repairable
damage regime, &', < 0.012 ) to exponential
damage progression (severe damage regime, 8§ >
0.012). The critical threshold provides practical
design guidance for distinguishing repair-worthy
damage from severe damage requiring major
structural intervention.

Performance-Based Design Framework

Performance-based design philosophy has
successfully transformed earthquake engineering
practice by defining multiple structural performance
objectives mapped to earthquake intensities (X.
Zhang et al., 2021). This paradigm can be adapted to
rockfall-impact design through three impact-
resistance performance objectives (J. Zhang, Mo, et
al., 2025),(Li et al., 2022). The first objective is
immediate occupancy where the reinforced concrete
bridge pier sustains no damage or only slight damage

retaining its original strength and stiffness with
RVLCC > 0.95, applies to critical routes such as
emergency arteries and lifelines. The second
objective is repairable damage where the pier
sustains moderate damage while maintaining
adequate residual capacity for superstructure support
with0.70 < RVLCC <0.95, applies to primary routes
with regional significance. The third objective is
collapsing prevention where the pier sustains severe
damage while retaining sufficient residual axial load-
bearing capacity to prevent structural collapse with
0.40 < RVLCC<0.70, applies to secondary or rural
routes.

The design procedure comprises six sequential
steps. Step one involves hazard characterization
through integrated field surveys, remote sensing
using light detection and ranging technology and
aerial  photography, and rockfall trajectory
simulation to define the distribution of impact
parameters (Z. Liu et al., 2024). Step two requires
selection of target performance objective based on
bridge criticality classification and project budget
constraints. Step three involves pier design
parameter determination where diameterD, concrete
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strength f, , reinforcement configuration with
longitudinal steel ratio and stirrup spacing are
proposed  while ensuring  seismic  design
requirements are satisfied (X. Zhang et al., 2021).
Step four requires estimation of peak rockfall impact

force through employment of the CNN-SVM neural
network model or unified geometric-structural
framework to predict impact force for site-specific
rockfall parameters (J. Zhang, Jing, et al,
2025),(LIU Zongfeng et al., 2020). The damage
index is calculated using Eq (5):

_ Vdsd _ Fimpact &ontact

7D M
Vdsc

Where v, is the shear demand from impact
loading, vji. is the dynamic shear capacity modified
for strain rate effects, R, is the peak impact force,

Acontact 1S the contact area, Ny, is the dynamic axial

force, and b is the section width. Eq (5) represents
the fundamental demand-to-capacity ratio that
guides design acceptance or rejection. Step five
involves damage index calculation where y,

quantifies the demand-to-capacity margin. Step six
involves performance verification where calculated
damage index is compared against performance
objective and the design is either accepted or

N (5)

redesigned through iterative adjustment (J. Zhang,
Mo, et al., 2025).

The performance-based design framework was
demonstrated on a typical mountain expressway
bridge with twin rectangular reinforced concrete
piers with initial diameter 1200 mm and height 12
meters. With initial design parameters of diameter
1200 mm, concrete strength 35 megapascals, and
stirrups number 20 at 150 mm spacing, the dynamic
shear capacity is 6655 KN. As presented in Table 3,
the iterative design process demonstrates systematic
progression toward acceptable performance (J.
Zhang, Mo, et al., 2025):

Table 3 Design Iteration Process

Design phase | D (mm) f, S, 7D Status
Initial 1200 35 150 1.70 unacceptable
Iteration 1 1400 35 150 1.44 unacceptable
Iteration 2 1200 40 100 1.40 marginal
Final 1300 40 100 1.24 P2 acceptable

The initial design with damage index 1.70 predicts

mm with concrete strength

increased to 40

severe unacceptable damage. When the diameter is
increased to 1400 mm while maintaining other
parameters, the damage index becomes 1.44, which
remains unacceptable. Reverting to diameter 1200

megapascals and stirrup spacing decreased to 100
mm achieves damage index 1.40, which remains
marginally  unacceptable. The final design
combining improvements with diameter 1300 mm,
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concrete strength 40 megapascals, stirrup spacing
100 mm, and increased longitudinal reinforcement
achieves damage index 1.24, which is acceptable for
the P2 objective predicting moderate damage. The
cost increase over the initial design is approximately
12 %. This case exemplifies how the performance-
based framework guides economically viable design
without resorting to brute-force over-design (J.
Zhang, Mo, et al., 2025).

Vulnerability Assessment & Risk Quantification

Monte Carlo sampling with N =10’ scenarios drawn
from the joint geological-structural distribution via
XGBoost surrogate yields bridge vulnerability across
damage levels (J. Zhang, Jing, et al., 2025),(LIU
Zongfeng et al., 2020). The analysis generates 10
million impact scenarios reflecting realistic
combinations of rockfall mass, velocity, height, and

angle at the bridge location. The damage index
calculated for each scenario is converted to
probability of exceeding each damage threshold,
providing fragility curves and vulnerability
information  essential for infrastructure risk
management (J. Zhang et al., 2022). As documented
in Table 4 the probability distribution and reliability
indices are summarized showing vulnerability for
each damage level. The results reveal that under the
site-specific rockfall hazard profile, the bridge has an
80.2 percent probability of exceeding moderate
damage. The reliability index of negative 0.85 for
moderate damage indicates unacceptable risk by
traditional seismic engineering standards and signals
urgent need for protective measures. Importantly,
complete failure probability remains negligible at
0.0044 percent, indicating that despite substantial
damage potential, catastrophic collapse is unlikely,
thereby bridging repair and loss-of-life consequences
(J. Zhang, Mo, et al., 2025).

Table 4 Bridge Vulnerability Assessment

Damage Level Probability Reliability Index B

Basically Intact 1.000 -5.22

Slight Damage 0.985 —-2.18
Moderate Damage 0.802 —-0.85

Serious Damage 0.0008 3.15

Table 4 provides comprehensive visualization
of the vulnerability assessment including fragility
curves, probability distributions, and reliability
indices mapping to performance objectives.

Figure 3: Bridge Vulnerability Assessment and
Probability Distribution. Panel (a) displays fragility
curves depicting probability of exceeding four
damage thresholds (Basically Intact, Slight Damage,

Moderate Damage, Serious Damage) as a function of
engineering demand parameter. Panel (b) shows
probability distribution from site-specific rockfall
hazard analysis: P (Basically Intact) = 1.000, P
(Slight Damage) = 0.985, P (Moderate Damage) =
0.802, and P (Serious Damage) = 0.0008, indicating
high likelihood of moderate damage requiring repair
before traffic restoration under expected loading
conditions.
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Figure 3: Analysis results under different surrogate models (a) Failure probability P ,(b) Reliabilityﬁ (J. Zhang,
Jing, et al., 2025)

Research Gaps and Future Directions

Machine learning generalization represents a
critical limitation of current surrogates where models
trained on one geometry such as 1200 mm circular
hollow piers often fail for different geometries
including rectangular  sections or T-shaped
configurations (J. Zhang, Jing, et al., 2025),(LIU
Zongfeng et al., 2020),(Yang et al., 2023). Physics-
informed neural networks embedding conservation
laws show promise but remain underexplored in
structural engineering contexts (J. Zhang, Mo, et al.,
2025),(L. Liu et al., 2024). Real rock properties
including fracture, deformability, and surface
irregularity significantly affect impact response
compared to the simplified rigid-sphere assumption

in current models, requiring large-scale tests with
actual rocks to calibrate the contact algorithms (Zhao
et al., 2023),(Gangolu et al., 2022).

Damage index standardization remains a
significant gap where existing indices inadequately
capture strain-rate and inertial effects dominating
impact response (G. Zhang et al., 2025). A unified
damage index must incorporate strain-rate hardening
factors as function of strain rate history, cumulative
plastic strain reflecting micro-void nucleation and
coalescence, stress triaxiality capturing confinement-
dependent fracture mechanics, and impact duration
and rebound interactions for multiple-contact events
(J. Zhang, Jing, et al., 2025). Experimental validation
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through large-scale impact tests would be essential
for calibration(Mo et al., 2025).

Integrated geological-structural assessment
remains largely decoupled where slope stability
affects rockfall frequency, stochastic rockfall
frequency follows non-Poisson arrival processes,
damage-dependent bridge capacity degradation
requires temporal evolution analysis, and network-
level resilience remains unexplored (J. Zhang et al.,
2022),(Zhao et al., 2024). These coupled effects
require development of integrated frameworks
linking geohazard models with  structural
vulnerability assessment and transportation network
consequences (X. Zhang et al., 2021).

Experimental validation through centrifuge
testing using 50-gram systems for one-fiftieth-scale
models can maintain stress-level similitude while
testing pier-slope systems. Full-scale field testing in
active rockfall zones with protective barriers for
personnel safety should monitor natural impacts via
accelerometers and high-speed cameras (Wu et al.,
2025),(Mo et al., 2025). Dynamic material property
characterization should develop databases of impact
properties for common materials in mountainous

regions including concrete tensile strength at1000s ™
, rebar strain-rate hardening for thermomechanical
controlled processing steel grades, and rock fracture
toughness.

International standards bodies including 1SO
and the Comité Européen de Normalisation (CEN)
should convene working groups developing
consensus fragility models parameterized by impact
parameters, performance-based design frameworks
adapted from seismic engineering, and surrogate
modelling guidelines (J. Zhang et al., 2022).
Integration into design codes including the
International Building Code and Eurocode would
accelerate adoption and harmonize global practice (J.
Zhang et al., 2022).

Conclusion

Recent advances have transformed rockfall-
impact assessment from subjective engineering
judgment to quantitative probabilistic frameworks
enabling evidence-based decision-making. Key
contributions include clear establishment of failure

mechanism duality distinguishing localized front
panel damage from global response. Identification of
the optimal engineering demand parameter as
residual normalized deflection at the impact location

achieves =092 correlation with RVLCC.

Development of XGBoost surrogates with R> =0.996
enables rapid vulnerability assessment through
Monte Carlo sampling at computational cost one
million times lower than direct finite element
analysis. Demonstration of performance-based
design shows economically viable solutions with
realistic cost-benefit. Quantification of earthquake-
rockfall cascade effects reveals 83 % non-additive
reduction in residual capacity, highlighting critical
gaps in current design standards.

Despite rapid recent progress, several
fundamental questions persist. Machine learning
generalization across heterogeneous pier geometries
remains uncertain. Real rock properties including
fracture and deformability require systematic
investigation. Standardized damage-performance
indices accounting for dynamic strain-rate effects
remains absent. Integration of geological and
structural disciplines through coupled modelling
frameworks is needed. International collaboration
through standards bodies is essential for code
integration and harmonized global practice.

The field is positioned for advancement in
physics-informed neural networks embedding
conservation laws, digital twin technology
integrating  wireless sensors  with  real-time
simulation for early warning systems, artificial
intelligence interpretability through attention
mechanisms and saliency analysis for practitioner
confidence, and standardization and code integration
through international working groups. These
advances  would transform  rockfall-impact
assessment from specialized research to routine
engineering practice supported by regulatory
standards and design codes applicable globally.
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