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1. Introduction 

Explainable AI for cybersecurity detection is 

increasingly important because intrusion detection 

systems (IDS) support high-stakes decisions in 

security operations, where analysts must justify 

alerts, prioritize response, and audit model behavior. 

At the same time, the data conditions under which 

IDS models are trained are often unfavorable: 

labeled cybersecurity datasets are frequently small 

due to the cost of expert labeling and the rapid 
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emergence of new attacks, and they are commonly 

noisy because ground truth is delayed, incomplete, or 

inferred from weak heuristics [12]–[14], [17], [18]. 

These constraints are particularly acute in multi-class 

intrusion detection, where minority attack categories 

are rare but operationally critical. As a result, a 

model that performs well under clean and abundant 

labels can degrade substantially when supervision is 

scarce or corrupted, producing unstable predictions 

and unreliable confidence estimates. While 

explainers such as LIME, SHAP, and Integrated 

Gradients can provide feature-level attributions to 

support analyst interpretation, explanations are only 

useful if they remain faithful and stable under 

realistic training stress [1]–[3]. Under small and 

noisy datasets, models may memorize spurious 

patterns or shift decision boundaries across 

retraining runs, leading to explanations that drift, 

vary in feature ranking, or highlight non-causal 

correlates. In parallel, noisy-label learning research 

has proposed noise-handling strategies, including 

sample-selection methods such as co-teaching and 

noise-tolerant loss functions such as Symmetric 

Cross Entropy and Generalized Cross Entropy, to 

reduce sensitivity to corrupted supervision [6]–[8]. 

However, comparatively little work evaluates, in a 

unified manner, how these strategies affect not only 

detection performance but also probability 

calibration and the consistency of explanations, 

which are essential for operational trust in 

cybersecurity settings. 

This paper presents a comparative study of 

explainable cybersecurity detection under controlled 

small-data and noisy-label regimes using two widely 

adopted IDS benchmarks, UNSW-NB15 and 

CICIDS2017 [4], [5]. Training scarcity is simulated 

by stratified downsampling of the training set, and 

label noise is simulated using both symmetric 

corruption and a security-realistic benignification 

mechanism that preferentially flips attack labels 

toward benign. Representative detector families are 

trained using empirical risk minimization and noise-

mitigation alternatives, and explanations are 

generated using LIME, SHAP, and Integrated 

Gradients. The study evaluates detection 

effectiveness and probability reliability alongside 

explanation faithfulness and stability, thereby 

linking training choices to the usefulness and 

consistency of analyst-facing explanations in 

intrusion detection. 

2. Related Work 

2.1 Explainable AI in Intrusion Detection and 

Cybersecurity 

The demand for interpretability in security analytics 

has grown alongside the adoption of complex 

machine-learning models for intrusion detection, 

malware analysis, and anomaly detection, where 

decisions must be explainable to analysts and 

auditable for governance. Foundational 

interpretability work emphasizes that 

“interpretability” is context-dependent and must be 

evaluated with respect to concrete goals such as trust, 

debugging, and decision support rather than treated 

as a single universal property [10]. Broader surveys 

further organize explanation methods by explanation 

target, model access, and explanation form, 

highlighting recurring trade-offs between fidelity, 

human comprehensibility, and computational cost 

[11]. In cybersecurity specifically, recent systematic 

reviews emphasize that XAI can improve analyst 

trust and operational adoption of IDS by making 

decisions more transparent, but also note that many 

studies remain limited to clean benchmark settings 

and report explanations without rigorous robustness 

evaluation [12]. Similarly, recent IDS-focused XAI 

papers and reviews call attention to the need for 

evaluating explanation consistency, stability, and 

forensic usefulness when models are used as 

evidence-supporting tools in security workflows [13], 

[15]. Recent comparative studies applying SHAP 

and LIME to intrusion detection models also show 

that explanation quality varies substantially by 

model family and data regime, reinforcing that the 

choice of explainer cannot be separated from the 

characteristics of the trained detector [15]. Related 

work in IoT intrusion detection further motivates 

XAI as a means to increase transparency and user 

trust, especially where IDS decisions are integrated 

into automated response pipelines [16]. Despite these 

advances, much of the XAI-for-IDS literature 

evaluates explanations in isolation or focuses on 

qualitative interpretability demonstrations without 

stress testing under realistic supervision constraints. 
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In operational contexts, labels are often derived from 

weak signals and delayed incident confirmation, 

which can lead to systematic mislabeling patterns; 

explanations produced under such conditions may be 

plausible but unreliable, particularly across 

retraining cycles. This motivates the need for studies 

that treat explanation robustness as a primary 

objective rather than an auxiliary visualization. 

2.2 Learning with Noisy Labels and Robust 

Training Strategies 

A large body of work studies learning under label 

noise, proposing strategies that modify the objective 

function, reweight or filter examples, or model the 

noise process explicitly. A comprehensive survey of 

noisy-label learning categorizes major approaches 

and emphasizes that deep models can overfit noisy 

labels, motivating robust losses and sample-selection 

methods that limit memorization of corrupted 

supervision [17]. In parallel, the security literature 

highlights that attacks and failures can occur at 

multiple stages of the ML pipeline, including 

training-time data and label manipulation, making 

robustness to corrupted supervision relevant not only 

as a statistical issue but also as a security concern 

[18]. Robust loss functions seek to reduce sensitivity 

to mislabels while retaining sufficient learning 

capacity. Symmetric Cross Entropy introduces a 

combination of standard cross-entropy and a reverse 

term to improve robustness under noisy supervision 

[7]. Generalized Cross Entropy interpolates between 

mean absolute error and cross-entropy to improve 

noise tolerance while maintaining optimization 

stability [8]. Sample-selection approaches such as 

co-teaching train two models jointly and exchange 

small-loss instances under the premise that small-

loss samples are more likely to be correctly labeled, 

improving robustness under severe label noise [6]. 

These strategies have been widely studied in 

computer vision and general classification tasks; 

however, in cybersecurity settings their evaluation 

often prioritizes detection performance, while 

calibration and explanation quality are less 

commonly assessed together. This gap is important 

because security analysts rely on calibrated 

confidence scores for alert prioritization and rely on 

explanations for triage and accountability. 

2.3 Calibration, Reliability, and the 

Trustworthiness of IDS Outputs 

Model calibration has become a central 

consideration in deploying probabilistic classifiers, 

especially in risk-sensitive domains where 

confidence scores influence downstream decisions. 

“On Calibration of Modern Neural Networks” shows 

that many modern neural networks are poorly 

calibrated and introduces temperature scaling as a 

simple post-hoc correction, while popularizing 

reliability diagrams and Expected Calibration Error 

as practical evaluation tools [9]. In cybersecurity 

operations, calibration is operationally meaningful 

because confidence is often used to rank alerts or set 

thresholds; miscalibration can increase analyst 

burden by elevating false positives or suppressing 

true attacks. Nevertheless, calibration is still 

frequently omitted in IDS evaluations, and the 

interaction between label noise, small data, robust 

training, and calibration remains underexplored in 

IDS-focused studies compared to accuracy-focused 

reporting. 

2.4 Robustness of Explanations: Faithfulness, 

Stability, and Drift 

Beyond producing explanations, recent 

interpretability discussions emphasize the need to 

evaluate explanation quality with measurable criteria. 

Foundational work argues for rigorous evaluation 

protocols and calls attention to the absence of 

consensus on what interpretability should mean and 

how it should be measured in practice [10]. Broader 

surveys of explanation methods similarly highlight 

the necessity of matching explanation techniques and 

evaluation metrics to the application setting, rather 

than assuming a single explainer is universally 

reliable [11]. In IDS contexts, recent reviews 

explicitly identify explanation stability and 

consistency as unresolved challenges, noting that 

explanations can change across retraining or under 

distribution shift, which is problematic for 

operational trust and auditing [12], [13]. Empirical 

IDS studies comparing post-hoc explainers also 

report that attribution rankings can vary substantially 

across explainers and models, motivating 

robustness-oriented metrics such as stability and 
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similarity-based measures when explanations are 

used for investigation or forensic justification [15]. 

2.5 Summary and Gap Addressed by This Paper 

Prior work establishes the importance of XAI for IDS 

and provides many methods for learning with noisy 

labels. However, three limitations commonly remain. 

First, many IDS-XAI studies evaluate explainers 

under clean benchmark assumptions, without 

systematically stress testing explanation behavior 

under small-data and noisy-label regimes that mirror 

operational constraints [12], [13]. Second, noisy-

label robustness work is rarely connected to 

explanation robustness, even though robust training 

can alter decision drivers and therefore the 

explanations that analysts see [17]. Third, IDS 

evaluations often underreport calibration, despite its 

operational relevance for alert ranking and triage and 

its known sensitivity to training conditions [9]. This 

paper addresses these gaps by jointly evaluating 

detection effectiveness, calibration reliability, and 

explanation robustness under controlled small-data 

and noisy-label regimes, enabling a comparative 

analysis of model family, robust training strategy, 

and explainer choice. 

3. Methodology 

3.1 Study Design 

This work adopts an experimental comparative 

design to evaluate explainable AI for multi-class 

intrusion detection under two practical constraints 

that commonly arise in operational security analytics, 

namely limited labeled training data and noisy 

supervision. The study compares detection models 

trained under standard empirical risk minimization 

and under noise-robust learning strategies. 

Explanations are then generated using multiple XAI 

techniques and evaluated with quantitative metrics 

that capture faithfulness and robustness. The key 

experimental factors are training-set size and label-

noise level, while the principal outcomes are 

detection effectiveness, probability calibration, and 

explanation quality. The end-to-end workflow of 

data preparation, stress testing, training, evaluation, 

and explanation is summarized in Figure 1.
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Figure 1. Overview of the experimental workflow for explainable cybersecurity detection under small-data and 

noisy-label regimes. 

 

 

 

3.2 Datasets and Multi-class Labeling 

The evaluation uses two publicly available intrusion 

detection datasets, UNSW-NB15 and CICIDS2017, 

to reduce the risk that conclusions are dependent on 

a single benchmark. Both datasets are treated in a 

multi-class setting. For UNSW-NB15, labels include 

normal traffic and multiple attack categories. For 

CICIDS2017, labels include benign traffic and 

multiple attack types derived from real network 

traffic captures. Because the label spaces differ 

across datasets, all comparisons are performed 

within each dataset, and cross-dataset metrics are 
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interpreted as trend consistency rather than direct 

class-to-class equivalence. The dataset 

characteristics and experimental regimes used in this 

study are summarized in Table 1.

 

Table 1: Dataset characteristics and experimental regimes. 

Summary of dataset characteristics and experimental regimes for UNSW-NB15 and CICIDS2017. 

 

 

3.3 Feature Representation 

All experiments assume a tabular feature 

representation. Each instance corresponds to a 

network flow or session described by numeric and 

categorical traffic attributes. Features typically 

include duration statistics, packet and byte counts, 

direction-specific aggregates, rate-based measures, 

and protocol or flag indicators. For UNSW-NB15, 

the feature schema is defined by the dataset release 

and includes both continuous and categorical 

variables. For CICIDS2017, the experiments use the 

Machine Learning CSV flow representation 

produced by the dataset creators, which contains 

derived flow statistics suitable for supervised 

intrusion detection. Feature sets are not forced to 

match between datasets, and models are trained and 

explained using the native feature space of each 

dataset. 

3.4 Data Preparation 

A consistent preprocessing pipeline is applied 

independently to each dataset and then reused across 

all experimental regimes to ensure comparability. 

Missing values are handled using imputation 

statistics computed from the training split only, 

preventing information leakage into validation or 

testing. Categorical attributes are transformed into 

numeric representations using one-hot encoding or 

an equivalent encoding scheme that preserves 

category identity. Continuous features used by neural 

models are standardized using z-score normalization, 

where the mean and standard deviation are computed 

on the training split only and then applied to 

validation and test splits. Duplicate rows are 

removed where present to reduce bias from repeated 

samples. All preprocessing decisions are logged to 

support reproducibility. 

3.5 Data Partitioning and Fixed Test Policy 

The evaluation follows a fixed-test protocol to ensure 

that performance and explanation differences arise 

from the experimental stressors rather than changes 

in evaluation data. For UNSW-NB15, the dataset is 

distributed with predefined training and test sets; the 

provided test set is kept fixed, and the provided 

training set is further divided into training and 

validation partitions using stratified sampling. For 

CICIDS2017, the dataset is distributed as multiple 

flow CSV files rather than an official train/test split; 

therefore, a stratified partition is constructed into 

Dataset Task #Samples #Features #Classe

s 

Split policy p fractions η rates Noise types 

UNSW-

NB15 

Multi-

class  

257,673 

(Train 

175,341; 

Test 

82,332) 

49 + label 10 Use official test; 

split train into 

train/val  

{1.0,0.2,0.1,0.05} {0.0,0.1,0.2,0.4} Symmetric; 

Benignification 

CICIDS2017 Multi-

class  

2,830,743 

flows 

78 + label 15  Create stratified 

train/val/test; 

fixed test 

{1.0,0.2,0.1,0.05} {0.0,0.1,0.2,0.4} Symmetric; 

Benignification 
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training, validation, and test sets, and the test set is 

then held fixed across all experiments. Stratification 

is applied to preserve class proportions under 

imbalance, which is critical for multi-class intrusion 

detection where rare attack categories can otherwise 

be under-represented. 

3.6 Small-Data Regimes 

To simulate limited labeled data, the training 

partition is downsampled to a retained fraction p, 

while the validation and test partitions remain 

unchanged. Training fractions are chosen to 

represent both moderate and severe scarcity. In this 

study, 𝑝 ∈ {1.0,0.2,0.1,0.05}. Downsampling is 

performed using stratified sampling to preserve class 

proportions under imbalance, ensuring that minority 

attack classes remain represented as far as possible. 

Because some attack categories are extremely rare, 

the smallest fractions may still eliminate certain 

classes in a given draw; this outcome is recorded and 

reflected in the variability reported across random 

seeds. This regime quantifies how detection 

effectiveness, calibration, and explanation behavior 

change as the amount of labeled evidence decreases, 

and provides a baseline for analyzing interactions 

with label-noise conditions in subsequent 

experiments. 

3.7 Noisy-Label Regimes 

To model imperfect supervision, label noise is 

injected into training labels only after downsampling 

has been applied. Let 𝜂 denote the label-noise rate, 

with 𝜂 ∈ {0.0,0.1,0.2,0.4}. Training proceeds using 

corrupted labels 𝑦̃ produced from original labels 𝑦 

under a controlled corruption process. Two noise 

mechanisms are evaluated. Symmetric noise replaces 

a label with an incorrect label sampled uniformly 

from the remaining classes with probability 𝜂 . 

Asymmetric benignification noise introduces a 

stronger bias toward relabeling attack samples as 

benign or normal, reflecting a common operational 

failure mode where malicious traffic is mislabeled as 

legitimate due to incomplete ground truth, delayed 

incident confirmation, or heuristic labeling. The use 

of both noise mechanisms allows the study to test 

robustness under generic corruption and under a 

security-realistic corruption pattern. 

3.8 Detection Models 

Two representative detector families are evaluated to 

reflect common practice in intrusion detection and to 

support both model-agnostic and model-specific 

explanation methods. The first family is tree-based 

ensembles, instantiated as Random Forest and 

gradient-boosted decision trees, which are strong 

baselines for tabular intrusion features and typically 

perform well under class imbalance. The second 

family is a neural tabular classifier implemented as a 

multi-layer perceptron with regularization such as 

dropout. Hyperparameters are selected using the 

validation set under the clean, full-data condition 

(𝑝 = 1.0, 𝜂 = 0)  and then kept fixed across all 

small-data and noisy-label regimes to avoid 

confounding the study by retuning models for each 

condition. Training uses validation-based early 

stopping to reduce overfitting, particularly under 

small-data conditions.

 

 

Table 2: Detection models and learning strategies evaluated. 

Category Method Brief description Implementation 

detail 

Detector (tree) Gradient-Boosted 

Trees 

Tree-ensemble 

detector for tabular 

IDS features 

Tune on clean full-

data; fix thereafter; 

early stopping 

Detector (tree) Random Forest Bagging-based tree 

ensemble baseline 

Fixed number of 

trees/depth 

constraints 
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Detector MLP  Neural detector for 

tabular IDS features 

Fixed architecture; 

standardized inputs; 

early stopping 

Training strategy ERM  Standard supervised 

baseline 

Cross-entropy; 

optional class 

weights 

Training strategy Label smoothing Reduces 

overconfidence and 

memorization 

Fixed α across 

datasets/regimes 

Training strategy Noise-robust loss  Tolerance to 

mislabeled samples 

Fixed loss 

parameters 

Training strategy Co-teaching / small-

loss 

Sample selection to 

reduce noisy impact 

Warm-up then 

small-loss schedule 

Models and learning strategies compared under small-data and noisy-label regimes. 

 

 

3.9 Noise-Robust Learning Strategies 

Each detector family is trained using standard 

empirical risk minimization as well as noise-robust 

alternatives. The empirical risk minimization 

baseline minimizes cross-entropy loss using the 

potentially corrupted labels and serves as the 

reference condition. Label smoothing is applied as a 

regularization strategy by replacing hard one-hot 

targets with softened target distributions, reducing 

overconfidence and discouraging memorization of 

noisy labels. A noise-robust loss function is included, 

such as Symmetric Cross Entropy or Generalized 

Cross Entropy, to reduce sensitivity to mislabeling 

by balancing cross-entropy behavior with loss 

components that are less affected by corrupted 

samples. A sample-selection strategy is also used to 

reduce the influence of likely noisy examples. This 

is implemented as co-teaching or small-loss selection, 

where training emphasizes samples that yield smaller 

losses under the assumption that they are more likely 

to be correctly labeled, and in co-teaching two 

networks exchange selected samples to reduce 

confirmation bias. All strategies share the same 

optimization settings, validation monitoring, and 

early stopping criteria to ensure fair comparison. 

3.10 Explainability Methods 

Three explainers are used to generate feature-level 

attributions for alert interpretation and to support a 

comparative evaluation of explanation robustness. 

SHAP is applied to compute additive attributions for 

tabular models, providing local explanations for 

individual predictions and enabling global 

importance summaries by aggregation over many 

instances. LIME is used as a model-agnostic local 

explainer, generating explanations through 

perturbation sampling around an instance and fitting 

a weighted interpretable surrogate model. Integrated 

Gradients is used for the neural detector to compute 

attributions by integrating gradients along a straight-

line path from a baseline input 𝑥0 to the instance 𝑥. 

The attribution for feature iii is computed as

 

𝐼𝐺𝑖(𝑥𝑖 − 𝑥0) = ∫
∂f(x0 + β(x − x0))

∂xi

1

0

𝑑𝛽 

Baselines for Integrated Gradients are defined using 

training-distribution statistics, such as feature-wise 

means, and the number of integration steps is held 

constant across regimes. Explanations are generated 
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on a fixed subset of test instances containing benign 

and multiple attack classes, including both correctly 

and incorrectly classified examples, to examine 

explanation behavior under both success and failure 

modes.

 

 

Table 3: Explainability methods and explanation-quality metrics. 

Component Method/Metric Purpose Computation 

summary 

Explainer SHAP Local and global 

feature attribution 

Aggregate mean |φ| 

for global 

importance 

Explainer LIME Local surrogate 

explanation 

Perturbation 

sampling + 

weighted surrogate 

fit 

Explainer Integrated 

Gradients 

Neural attribution Path-integrated 

gradients from 

baseline 

Metric Faithfulness 

(deletion) 

Checks decision 

drivers 

Mask top-k 

features; measure 

confidence drop 

Metric Stability (overlap) Repeatability across 

runs 

Jaccard overlap of 

top-k features 

Metric Stability (rank) Ordering 

consistency 

Spearman 

correlation of 

rankings 

Metric Sparsity Compactness features for 80% 

attribution mass 

Metric Drift Change from 

baseline 

1-Jaccard(top-k) vs 

(𝑝 = 1, 𝜂 = 0) 

Explainers and explanation metrics used to evaluate interpretability under stress. 

 

3.11 Detection Metrics 

Detection effectiveness is evaluated on the fixed test 

set using metrics suitable for multi-class intrusion 

detection and class imbalance. Macro-F1 is used as 

the primary metric to give equal weight to each class, 

preventing performance on dominant classes from 

masking failures on rare attacks. AUROC is reported 

as a threshold-independent ranking metric, and 

AUPRC is included because it is more informative 

when attack prevalence is low. In addition to these 

effectiveness metrics, reliability of predicted 

probabilities is measured using Expected Calibration 

Error to quantify miscalibration and overconfidence 

that may arise under label noise and limited data. 

3.12 Explanation Metrics 

Explanation quality is evaluated with metrics 

designed to measure faithfulness and robustness 

under repeated training and under stress. Faithfulness 

is measured using a deletion-based protocol in which 
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the top- 𝑘  features identified by an explainer are 

removed or masked and the resulting decrease in 

predicted probability for the target class is recorded; 

larger decreases indicate that the explanation 

highlights features that genuinely drive the model 

decision. Stability is measured by repeating training 

under multiple random seeds for each (𝑝, 𝜂) 

condition and then comparing explanations across 

runs using top- 𝑘  feature-set overlap and rank 

correlation of feature importance. Sparsity is 

measured as the number of features required to 

account for a fixed proportion of total attribution 

magnitude, capturing explanation compactness for 

analyst consumption. Drift quantifies how 

explanations change relative to the clean full-data 

baseline (𝑝 = 1.0, 𝜂 = 0)  by comparing top- 𝑘 

feature sets and reporting divergence as 1-overlap, 

thereby capturing the degree to which the model’s 

explanatory narrative shifts as data become scarce or 

labels become corrupted. 

3.13 Experimental Procedure and 

Reproducibility 

For each dataset, every experimental condition is 

defined by a training fraction 𝑝 , a noise rate 𝜂 , a 

noise type, a detector family, and a learning strategy. 

The training data are first downsampled to the 

specified p, then labels are corrupted according to the 

selected noise mechanism at rate 𝜂. The detector is 

trained with validation-based early stopping. The 

trained model is evaluated on the fixed test set for 

detection effectiveness and calibration. Explanations 

are then computed for the predefined test subset 

using the applicable explainers, and explanation 

metrics are computed. Each full configuration is 

repeated across multiple random seeds to quantify 

variance. All seeds, splits, preprocessing parameters, 

and hyperparameters are logged to support 

replication of the experimental results. 

3.14 Statistical Analysis 

Because small-data and noisy-label regimes can 

introduce high variability, comparisons are based on 

repeated runs and paired evaluations across seeds 

where possible. Statistical significance testing is 

used to assess whether differences between learning 

strategies are consistently observed across repeated 

runs, and effect sizes are reported to reflect practical 

impact beyond p-values. This analysis supports 

claims regarding trade-offs between detection 

quality, calibration, and explanation robustness 

under constrained and noisy supervision. 

4. Results 

4.1 Reporting Convention 

This section reports experimental findings for multi-

class intrusion detection on UNSW-NB15 and 

CICIDS2017 under small-data and noisy-label 

regimes. All experiments are evaluated on a fixed 

test set for each dataset to ensure comparability 

across conditions. Each configuration is defined by 

the training fraction 𝑝, label-noise rate η, noise type, 

model family, learning strategy, and explainer. To 

account for stochasticity from stratified subsampling, 

model initialization, and label corruption, each 

configuration is repeated across multiple random 

seeds. Metrics are reported as mean ± standard 

deviation across seeds. Detection effectiveness is 

assessed using Macro-F1, AUROC, and AUPRC to 

reflect both balanced multi-class performance and 

class-imbalance behavior, while confidence 

reliability is assessed using Expected Calibration 

Error. Explanation quality is assessed using 

faithfulness, stability, sparsity, and drift to capture 

both local correctness and robustness under 

retraining. The end-to-end pipeline that governs data 

preparation, downsampling, noise injection, training, 

evaluation, and explanation follows the workflow in 

Figure 1. 

4.2 Detection Performance under Small Data 

Reducing labeled training data produces consistent 

degradation in intrusion detection performance 

across both datasets and across model families. As 

the training fraction 𝑝 decreases under clean 

supervision (𝜂 = 0), Macro-F1 declines, indicating 

that the model’s ability to correctly separate and 

recognize minority attack categories weakens when 

fewer labeled examples are available. AUPRC 

exhibits a similar decrease, reinforcing that 

precision–recall behavior deteriorates in the small-

data regime where attack prevalence is effectively 

harder to learn. In addition to the mean performance 
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drop, variability across seeds increases markedly at 

the smallest fractions, reflecting reduced training 

stability and sensitivity to which samples remain 

after stratified downsampling. Model-family 

differences are also visible under scarcity. Tree 

ensembles generally remain more sample-efficient 

and show slower performance deterioration than the 

neural tabular model, which exhibits sharper declines 

at small 𝑝. This pattern is consistent with the stronger 

inductive bias of tree ensembles for tabular 

engineered features and their ability to learn effective 

decision boundaries from fewer labeled samples. The 

combined trend across both datasets and model 

families is presented in Figure 2, which shows 

Macro-F1 and AUPRC as functions of 𝑝. The figure 

highlights that performance degradation under 

scarcity is systematic and motivates the need to 

evaluate robustness approaches under the more 

realistic scenario where label noise co-occurs with 

small labeled data.

 

Figure 2: Detection under small data (𝜂 = 0): Macro-F1 and AUPRC versus training fraction 𝑝

 

 

 

4.3 Detection Performance Under Noisy Labels 

Increasing label noise reduces detection performance 

in a largely monotonic manner, and the reduction is 

more severe under benignification noise than under 

symmetric noise. Under empirical risk minimization, 

Macro-F1 and AUPRC decline sharply as 𝜂increases, 

reflecting increased confusion among attack 

categories and reduced precision–recall performance 

when corrupted training targets weaken 

discriminative structure. The effect is amplified 

under benignification noise because attack-to-benign 

corruption directly erodes the separability of 

security-critical classes and biases the decision 

boundary toward the majority benign class. Robust 

learning strategies reduce the rate of degradation 

relative to empirical risk minimization. Label 

smoothing and noise-robust losses tend to provide 

clear improvements at moderate noise levels by 

limiting overconfidence and reducing sensitivity to 

mislabeled samples. Sample-selection approaches, 

such as co-teaching or small-loss filtering, typically 

provide stronger gains at higher noise levels because 

they limit the influence of high-loss instances that are 

more likely to be mislabeled. Figure 3 illustrates 

Macro-F1 versus 𝜂  under both symmetric and 

benignification noise, showing that robust strategies 

maintain higher performance and exhibit flatter 

decline curves than standard training. The separation 

between the two panels in Figure 3 further 

emphasizes that benignification is the more 

damaging and operationally realistic noise 

mechanism, making it a more discriminative stress 

test for robustness methods.
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Figure 3: Macro-F1 versus η under symmetric and benignification noise. 

 

Macro-F1 as a function of training-label noise rate η under (a) symmetric noise and (b) benignification noise.  

 

 

4.4 Joint Impact of Small Data and Noisy Labels 

When data scarcity and label corruption occur 

together, degradation is non-linear, indicating an 

interaction effect rather than a simple additive 

penalty. At smaller training fractions p, the same 

increase in noise rate η causes disproportionately 

larger losses in Macro-F1 and AUPRC than in 

higher-data regimes. This suggests that limited clean 

evidence amplifies vulnerability to corrupted 

supervision: with fewer reliable examples, 

mislabeled samples can more easily shift class 

boundaries, increase confusion among minority 

attack categories, and encourage learning of spurious 

correlates. Benignification noise is consistently the 

most damaging combined setting because it 

systematically relabels attacks as benign, directly 

eroding separability for security-critical classes. 

Consistent with Section 4.3, noise-mitigation 

strategies reduce the rate of degradation across most 

(p, η) settings, but extreme scarcity still limits 

recoverable generalization because the training 

signal is fundamentally constrained. 

4.5 Calibration and Confidence Reliability 

Confidence reliability deteriorates as η increases, 

particularly under empirical risk minimization, 

where models tend to become overconfident relative 

to their true correctness. This is operationally 

significant because IDS deployments often use 

predicted probabilities to rank alerts, prioritize 

triage, or set decision thresholds. Under label noise, 

standard training increases the frequency of high-

confidence errors, raising Expected Calibration Error 

(ECE). The effect is often magnified at smaller p, 

where uncertainty is higher but models can still fit 

sharp decision boundaries that do not reflect true 

correctness. Building on Section 4.3, we find that the 

same noise handling strategies also improve 

calibration: label smoothing discourages extreme 

probabilities, noise tolerant losses reduce sensitivity 

to corrupted targets, and sample selection approaches 

reduce the influence of likely mislabeled instances. 

Reliability curves (Figure 4) reflect this pattern, with 

these methods producing confidence accuracy 

relationships closer to the ideal diagonal, especially 

under high η and benignification noise.
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Figure 4: Reliability curves under clean and noisy-label conditions. 

 

Reliability curves under (a) clean labels (𝜂 = 0) and (b) noisy labels (𝜂 = 0.4), comparing training strategies. 

 

4.6 Explanation Faithfulness 

Faithfulness evaluates whether an explainer 

identifies features that genuinely drive the model’s 

prediction, rather than producing plausible but non 

causal narratives. Across both datasets, faithfulness 

declines as training conditions worsen (lower p and 

higher η), indicating weaker alignment between 

attributions and the model’s true decision drivers 

under scarce or corrupted supervision. In cleaner 

regimes, explanations for tree-based detectors 

typically yield stronger deletion effects, consistent 

with more stable feature reliance on engineered 

tabular IDS features. Under severe noise especially 

benignification faithfulness decreases across 

explainers, reflecting increased reliance on unstable 

patterns induced by corrupted labels. As noted in 

Section 4.3, noise tolerant training reduces 

memorization of corrupted supervision; 

correspondingly, it preserves higher faithfulness 

under elevated η and yields explanations that better 

reflect the decision logic presented to analysts. 

4.7 Explanation Stability and Drift 

Explanation reliability is strongly affected by both 

scarcity and label corruption. Stability decreases as p 

decreases and η increases, showing that feature 

rankings and attribution magnitudes become less 

repeatable across retraining runs under degraded 

learning conditions. Drift increases under the same 

stressors, indicating that explanations diverge from 

those obtained under the clean, full-data baseline. 

This matters for operational continuity and 

governance: when explanations change substantially 

between retraining cycles, analysts may receive 

different investigative narratives for similar traffic 

patterns, complicating auditing and playbook 

development. In line with Section 4.3, noise-

mitigation strategies reduce retraining-induced 

volatility, improving stability and reducing drift, 

with the largest benefits typically observed under 

benignification noise where boundary shifts are 

otherwise strongest. Figure 5 summarizes these 

trends across both benchmarks.
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Figure 5. Explanation stability (solid) and drift (dashed) versus label-noise rate η for (a) UNSW-NB15 and (b) 

CICIDS2017. 

 

 

 

4.8 Explanation Sparsity 

Sparsity captures explanation compactness and 

analyst usability. Under small-data and noisy-label 

regimes, explanations often become more diffuse, 

requiring more features to account for a fixed 

proportion of attribution magnitude. This increases 

cognitive load and can indicate that attribution mass 

is spread across weak or unstable correlates rather 

than concentrated on a consistent signal. Following 

the stability trends in Sections 4.3 and 4.7, 

approaches that reduce noise sensitivity also tend to 

improve compactness: when decision drivers are 

more consistent, attribution mass is more 

concentrated, producing explanations that are easier 

to interpret during triage. 

 

 

 

4.9 Qualitative Case Studies 

Quantitative metrics summarize overall behavior, 

but qualitative examples illustrate how explanations 

appear in practice. Under clean training, SHAP, 

LIME, and Integrated Gradients often highlight more 

consistent high-impact features, and explanations for 

comparable instances are easier to reconcile across 

runs. Under severe stress, empirical risk 

minimization produces larger shifts in feature 

identity and ranking, consistent with the observed 

decrease in stability and increase in drift. In line with 

Section 4.7, noise-mitigation strategies reduce this 

volatility and preserve more consistent analyst-

facing narratives across retraining cycles. Figure 6 

presents representative local explanations for benign 

and malicious instances from both datasets, 

illustrating the practical interpretability differences 

between standard and noise-mitigated training under 

scarcity and corruption.
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Figure 6: Local explanation examples (UNSW-NB15 and CICIDS2017). 

 

 

 

 

Conclusion  

This paper compared explainable multi-class 

intrusion detection under controlled small-data and 

noisy-label regimes using UNSW-NB15 and 

CICIDS2017. Across both datasets, detection 

effectiveness and explanation quality degrade 

nonlinearly when data scarcity and label noise co-

occur, with security-realistic benignification noise 

producing the most severe losses. In addition to 

reducing Macro-F1 and AUPRC, these conditions 

worsen probability reliability and increase 

explanation drift, undermining analyst trust and 

auditability. The results indicate that training choices 

affect not only accuracy but also calibration and the 

stability of explanations delivered to analysts. In 

operational IDS deployments where labels may be 

delayed or derived from weak heuristics noise-

mitigation strategies can improve the reliability of 

confidence scores and preserve more consistent 

explanatory narratives, supporting triage and 

governance. First, conclusions are based on two 

benchmarks and a fixed set of model families; 

additional traffic sources and modern deep tabular 

architectures may yield different trade-offs. Second, 

the injected noise mechanisms approximate 

operational errors but cannot capture all real labeling 

failure modes. Third, explanation metrics quantify 

stability and faithfulness under controlled settings 

but do not fully measure human interpretability or 

investigative usefulness in live SOC workflows. 

Future studies should evaluate additional datasets 

and streaming scenarios, incorporate concept drift 

and continual learning, and include human-in-the-

loop assessments to link explanation metrics to 

analyst decision quality and response time. 
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