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Abstract Review Article

Explainable Al (XAl) is increasingly required for intrusion detection systems (IDS) because security analysts
must justify alerts, prioritize response, and audit model behavior. In operational environments, however,
supervised IDS commonly faces two constraints: limited labeled training data and imperfect supervision
arising from delayed ground truth and weak labeling pipelines. This study presents a comparative evaluation
of explainable multi-class intrusion detection under controlled small-data and noisy-label regimes using
UNSW-NB15 and CICIDS2017. We simulate data scarcity by stratified downsampling of the training set and
simulate label noise using both symmetric corruption and a security-realistic benignification mechanism that
preferentially flips attack labels toward benign. Representative detector families are trained using empirical
risk minimization and noise-mitigation strategies, and explanations are generated using SHAP, LIME, and
Integrated Gradients. The evaluation jointly considers detection effectiveness, probability reliability, and
explanation quality using Macro-F1, AUROC, AUPRC, Expected Calibration Error, and explanation metrics
that capture faithfulness, stability, sparsity, and drift. Results show that performance and explanation
reliability degrade nonlinearly when small data and noisy labels co-occur, with benignification noise causing
the most severe losses. Noise-tolerant learning reduces these losses and improves calibration and explanation
stability, indicating that training choices affect not only accuracy but also the reliability of analyst-facing
explanations under scarce and noisy supervision.
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LIME, Integrated Gradients.
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1. Introduction alerts, prioritize response, and audit model behavior.
At the same time, the data conditions under which
IDS models are trained are often unfavorable:
labeled cybersecurity datasets are frequently small
due to the cost of expert labeling and the rapid

Explainable Al for cybersecurity detection is
increasingly important because intrusion detection
systems (IDS) support high-stakes decisions in
security operations, where analysts must justify
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emergence of new attacks, and they are commonly
noisy because ground truth is delayed, incomplete, or
inferred from weak heuristics [12]-[14], [17], [18].
These constraints are particularly acute in multi-class
intrusion detection, where minority attack categories
are rare but operationally critical. As a result, a
model that performs well under clean and abundant
labels can degrade substantially when supervision is
scarce or corrupted, producing unstable predictions
and unreliable confidence estimates. While
explainers such as LIME, SHAP, and Integrated
Gradients can provide feature-level attributions to
support analyst interpretation, explanations are only
useful if they remain faithful and stable under
realistic training stress [1]-[3]. Under small and
noisy datasets, models may memorize spurious
patterns or shift decision boundaries across
retraining runs, leading to explanations that drift,
vary in feature ranking, or highlight non-causal
correlates. In parallel, noisy-label learning research
has proposed noise-handling strategies, including
sample-selection methods such as co-teaching and
noise-tolerant loss functions such as Symmetric
Cross Entropy and Generalized Cross Entropy, to
reduce sensitivity to corrupted supervision [6]-[8].
However, comparatively little work evaluates, in a
unified manner, how these strategies affect not only
detection performance but also probability
calibration and the consistency of explanations,
which are essential for operational trust in
cybersecurity settings.

This paper presents a comparative study of
explainable cybersecurity detection under controlled
small-data and noisy-label regimes using two widely
adopted IDS benchmarks, UNSW-NB15 and
CICIDS2017 [4], [5]. Training scarcity is simulated
by stratified downsampling of the training set, and
label noise is simulated using both symmetric
corruption and a security-realistic benignification
mechanism that preferentially flips attack labels
toward benign. Representative detector families are
trained using empirical risk minimization and noise-
mitigation alternatives, and explanations are
generated using LIME, SHAP, and Integrated
Gradients. The study evaluates detection
effectiveness and probability reliability alongside
explanation faithfulness and stability, thereby

linking training choices to the usefulness and
consistency of analyst-facing explanations in
intrusion detection.

2. Related Work

2.1 Explainable Al in Intrusion Detection and
Cybersecurity

The demand for interpretability in security analytics
has grown alongside the adoption of complex
machine-learning models for intrusion detection,
malware analysis, and anomaly detection, where
decisions must be explainable to analysts and
auditable for governance. Foundational
interpretability work emphasizes that
“interpretability” is context-dependent and must be
evaluated with respect to concrete goals such as trust,
debugging, and decision support rather than treated
as a single universal property [10]. Broader surveys
further organize explanation methods by explanation
target, model access, and explanation form,
highlighting recurring trade-offs between fidelity,
human comprehensibility, and computational cost
[11]. In cybersecurity specifically, recent systematic
reviews emphasize that XAl can improve analyst
trust and operational adoption of IDS by making
decisions more transparent, but also note that many
studies remain limited to clean benchmark settings
and report explanations without rigorous robustness
evaluation [12]. Similarly, recent IDS-focused XAl
papers and reviews call attention to the need for
evaluating explanation consistency, stability, and
forensic usefulness when models are used as
evidence-supporting tools in security workflows [13],
[15]. Recent comparative studies applying SHAP
and LIME to intrusion detection models also show
that explanation quality varies substantially by
model family and data regime, reinforcing that the
choice of explainer cannot be separated from the
characteristics of the trained detector [15]. Related
work in 1oT intrusion detection further motivates
XAl as a means to increase transparency and user
trust, especially where IDS decisions are integrated
into automated response pipelines [16]. Despite these
advances, much of the XAl-for-IDS literature
evaluates explanations in isolation or focuses on
qualitative interpretability demonstrations without
stress testing under realistic supervision constraints.
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In operational contexts, labels are often derived from
weak signals and delayed incident confirmation,
which can lead to systematic mislabeling patterns;
explanations produced under such conditions may be
plausible but unreliable, particularly across
retraining cycles. This motivates the need for studies
that treat explanation robustness as a primary
objective rather than an auxiliary visualization.

2.2 Learning with Noisy Labels and Robust
Training Strategies

A large body of work studies learning under label
noise, proposing strategies that modify the objective
function, reweight or filter examples, or model the
noise process explicitly. A comprehensive survey of
noisy-label learning categorizes major approaches
and emphasizes that deep models can overfit noisy
labels, motivating robust losses and sample-selection
methods that limit memorization of corrupted
supervision [17]. In parallel, the security literature
highlights that attacks and failures can occur at
multiple stages of the ML pipeline, including
training-time data and label manipulation, making
robustness to corrupted supervision relevant not only
as a statistical issue but also as a security concern
[18]. Robust loss functions seek to reduce sensitivity
to mislabels while retaining sufficient learning
capacity. Symmetric Cross Entropy introduces a
combination of standard cross-entropy and a reverse
term to improve robustness under noisy supervision
[7]. Generalized Cross Entropy interpolates between
mean absolute error and cross-entropy to improve
noise tolerance while maintaining optimization
stability [8]. Sample-selection approaches such as
co-teaching train two models jointly and exchange
small-loss instances under the premise that small-
loss samples are more likely to be correctly labeled,
improving robustness under severe label noise [6].
These strategies have been widely studied in
computer vision and general classification tasks;
however, in cybersecurity settings their evaluation
often prioritizes detection performance, while
calibration and explanation quality are less
commonly assessed together. This gap is important
because security analysts rely on calibrated
confidence scores for alert prioritization and rely on
explanations for triage and accountability.

2.3  Calibration, Reliability, and the
Trustworthiness of IDS Outputs

Model calibration has become a central
consideration in deploying probabilistic classifiers,
especially in  risk-sensitive  domains  where
confidence scores influence downstream decisions.
“On Calibration of Modern Neural Networks” shows
that many modern neural networks are poorly
calibrated and introduces temperature scaling as a
simple post-hoc correction, while popularizing
reliability diagrams and Expected Calibration Error
as practical evaluation tools [9]. In cybersecurity
operations, calibration is operationally meaningful
because confidence is often used to rank alerts or set
thresholds; miscalibration can increase analyst
burden by elevating false positives or suppressing
true attacks. Nevertheless, calibration is still
frequently omitted in IDS evaluations, and the
interaction between label noise, small data, robust
training, and calibration remains underexplored in
IDS-focused studies compared to accuracy-focused
reporting.

2.4 Robustness of Explanations: Faithfulness,
Stability, and Drift

Beyond producing explanations, recent
interpretability discussions emphasize the need to
evaluate explanation quality with measurable criteria.
Foundational work argues for rigorous evaluation
protocols and calls attention to the absence of
consensus on what interpretability should mean and
how it should be measured in practice [10]. Broader
surveys of explanation methods similarly highlight
the necessity of matching explanation techniques and
evaluation metrics to the application setting, rather
than assuming a single explainer is universally
reliable [11]. In IDS contexts, recent reviews
explicitly identify explanation stability and
consistency as unresolved challenges, noting that
explanations can change across retraining or under
distribution  shift, which is problematic for
operational trust and auditing [12], [13]. Empirical
IDS studies comparing post-hoc explainers also
report that attribution rankings can vary substantially
across explainers and models, motivating
robustness-oriented metrics such as stability and
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similarity-based measures when explanations are
used for investigation or forensic justification [15].
2.5 Summary and Gap Addressed by This Paper

Prior work establishes the importance of XAl for IDS
and provides many methods for learning with noisy

labels. However, three limitations commonly remain.

First, many IDS-XAI studies evaluate explainers
under clean benchmark assumptions, without
systematically stress testing explanation behavior
under small-data and noisy-label regimes that mirror
operational constraints [12], [13]. Second, noisy-
label robustness work is rarely connected to
explanation robustness, even though robust training
can alter decision drivers and therefore the
explanations that analysts see [17]. Third, IDS
evaluations often underreport calibration, despite its
operational relevance for alert ranking and triage and
its known sensitivity to training conditions [9]. This
paper addresses these gaps by jointly evaluating
detection effectiveness, calibration reliability, and
explanation robustness under controlled small-data
and noisy-label regimes, enabling a comparative

analysis of model family, robust training strategy,
and explainer choice.

3. Methodology
3.1 Study Design

This work adopts an experimental comparative
design to evaluate explainable Al for multi-class
intrusion detection under two practical constraints
that commonly arise in operational security analytics,
namely limited labeled training data and noisy
supervision. The study compares detection models
trained under standard empirical risk minimization
and under noise-robust learning strategies.
Explanations are then generated using multiple XAl
techniques and evaluated with quantitative metrics
that capture faithfulness and robustness. The key
experimental factors are training-set size and label-
noise level, while the principal outcomes are
detection effectiveness, probability calibration, and
explanation quality. The end-to-end workflow of
data preparation, stress testing, training, evaluation,
and explanation is summarized in Figure 1.
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Figure 1. Overview of the experimental workflow for explainable cybersecurity detection under small-data and
noisy-label regimes.
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3.2 Datasets and Multi-class Labeling

The evaluation uses two publicly available intrusion
detection datasets, UNSW-NB15 and CICIDS2017,
to reduce the risk that conclusions are dependent on
a single benchmark. Both datasets are treated in a
multi-class setting. For UNSW-NB15, labels include

normal traffic and multiple attack categories. For
CICIDS2017, labels include benign traffic and
multiple attack types derived from real network
traffic captures. Because the label spaces differ
across datasets, all comparisons are performed
within each dataset, and cross-dataset metrics are
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interpreted as trend consistency rather than direct

class-to-class

equivalence.

The

dataset

characteristics and experimental regimes used in this
study are summarized in Table 1.

Table 1: Dataset characteristics and experimental regimes.

Dataset Task #Samples | #Features | #Classe | Split policy p fractions 1 rates Noise types
S
UNSW- Multi- 257,673 49 + label | 10 Use official test; | {1.0,0.2,0.1,0.05} | {0.0,0.1,0.2,0.4} | Symmetric;
NB15 class (Train split train into Benignification
175,341; train/val
Test
82,332)
CICIDS2017 | Multi- 2,830,743 | 78 + label | 15 Create stratified | {1.0,0.2,0.1,0.05} | {0.0,0.1,0.2,0.4} | Symmetric;
class flows train/val/test; Benignification
fixed test

Summary of dataset characteristics and experimental regimes for UNSW-NB15 and CICIDS2017.

3.3 Feature Representation

All  experiments assume a tabular feature
representation. Each instance corresponds to a
network flow or session described by numeric and
categorical traffic attributes. Features typically
include duration statistics, packet and byte counts,
direction-specific aggregates, rate-based measures,
and protocol or flag indicators. For UNSW-NB15,
the feature schema is defined by the dataset release
and includes both continuous and categorical
variables. For CICIDS2017, the experiments use the
Machine Learning CSV flow representation
produced by the dataset creators, which contains
derived flow statistics suitable for supervised
intrusion detection. Feature sets are not forced to
match between datasets, and models are trained and
explained using the native feature space of each
dataset.

3.4 Data Preparation

A consistent preprocessing pipeline is applied
independently to each dataset and then reused across
all experimental regimes to ensure comparability.
Missing values are handled using imputation
statistics computed from the training split only,

preventing information leakage into validation or
testing. Categorical attributes are transformed into
numeric representations using one-hot encoding or
an equivalent encoding scheme that preserves
category identity. Continuous features used by neural
models are standardized using z-score normalization,
where the mean and standard deviation are computed
on the training split only and then applied to
validation and test splits. Duplicate rows are
removed where present to reduce bias from repeated
samples. All preprocessing decisions are logged to
support reproducibility.

3.5 Data Partitioning and Fixed Test Policy

The evaluation follows a fixed-test protocol to ensure
that performance and explanation differences arise
from the experimental stressors rather than changes
in evaluation data. For UNSW-NB15, the dataset is
distributed with predefined training and test sets; the
provided test set is kept fixed, and the provided
training set is further divided into training and
validation partitions using stratified sampling. For
CICIDS2017, the dataset is distributed as multiple
flow CSV files rather than an official train/test split;
therefore, a stratified partition is constructed into
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training, validation, and test sets, and the test set is
then held fixed across all experiments. Stratification
is applied to preserve class proportions under
imbalance, which is critical for multi-class intrusion
detection where rare attack categories can otherwise
be under-represented.

3.6 Small-Data Regimes

To simulate limited labeled data, the training
partition is downsampled to a retained fraction p,
while the validation and test partitions remain
unchanged. Training fractions are chosen to
represent both moderate and severe scarcity. In this
study, p € {1.0,0.2,0.1,0.05}. Downsampling is
performed using stratified sampling to preserve class
proportions under imbalance, ensuring that minority
attack classes remain represented as far as possible.
Because some attack categories are extremely rare,
the smallest fractions may still eliminate certain
classes in a given draw; this outcome is recorded and
reflected in the variability reported across random
seeds. This regime quantifies how detection
effectiveness, calibration, and explanation behavior
change as the amount of labeled evidence decreases,
and provides a baseline for analyzing interactions
with  label-noise  conditions in  subsequent
experiments.

3.7 Noisy-Label Regimes

To model imperfect supervision, label noise is
injected into training labels only after downsampling
has been applied. Let n denote the label-noise rate,
with n € {0.0,0.1,0.2,0.4}. Training proceeds using
corrupted labels y produced from original labels y

under a controlled corruption process. Two noise
mechanisms are evaluated. Symmetric noise replaces
a label with an incorrect label sampled uniformly
from the remaining classes with probability 7 .
Asymmetric benignification noise introduces a
stronger bias toward relabeling attack samples as
benign or normal, reflecting a common operational
failure mode where malicious traffic is mislabeled as
legitimate due to incomplete ground truth, delayed
incident confirmation, or heuristic labeling. The use
of both noise mechanisms allows the study to test
robustness under generic corruption and under a
security-realistic corruption pattern.

3.8 Detection Models

Two representative detector families are evaluated to
reflect common practice in intrusion detection and to
support both model-agnostic and model-specific
explanation methods. The first family is tree-based
ensembles, instantiated as Random Forest and
gradient-boosted decision trees, which are strong
baselines for tabular intrusion features and typically
perform well under class imbalance. The second
family is a neural tabular classifier implemented as a
multi-layer perceptron with regularization such as
dropout. Hyperparameters are selected using the
validation set under the clean, full-data condition
(p =1.0,n =0) and then kept fixed across all
small-data and noisy-label regimes to avoid
confounding the study by retuning models for each
condition. Training uses validation-based early
stopping to reduce overfitting, particularly under
small-data conditions.

Table 2: Detection models and learning strategies evaluated.

Category Method

Brief description

Implementation
detail

Gradient-Boosted
Trees

Detector (tree)

Tree-ensemble
detector for tabular
IDS features

Tune on clean full-
data; fix thereafter;
early stopping

Detector (tree) Random Forest

Bagging-based tree
ensemble baseline

Fixed number of
trees/depth
constraints

Qroe
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overconfidence and
memorization

Detector MLP Neural detector for | Fixed architecture;
tabular IDS features | standardized inputs;
early stopping
Training strategy ERM Standard supervised | Cross-entropy;
baseline optional class
weights
Training strategy Label smoothing Reduces Fixed o across

datasets/regimes

Training strategy Noise-robust loss

Tolerance to
mislabeled samples

Fixed loss
parameters

Training strategy
loss

Co-teaching / small-

Sample selection to
reduce noisy impact

Warm-up then
small-loss schedule

Models and learning strategies compared under small-data and noisy-label regimes.

3.9 Noise-Robust Learning Strategies

Each detector family is trained using standard
empirical risk minimization as well as noise-robust
alternatives. The empirical risk minimization
baseline minimizes cross-entropy loss using the
potentially corrupted labels and serves as the
reference condition. Label smoothing is applied as a
regularization strategy by replacing hard one-hot
targets with softened target distributions, reducing
overconfidence and discouraging memorization of
noisy labels. A noise-robust loss function is included,
such as Symmetric Cross Entropy or Generalized
Cross Entropy, to reduce sensitivity to mislabeling
by balancing cross-entropy behavior with loss
components that are less affected by corrupted
samples. A sample-selection strategy is also used to
reduce the influence of likely noisy examples. This
is implemented as co-teaching or small-loss selection,
where training emphasizes samples that yield smaller
losses under the assumption that they are more likely
to be correctly labeled, and in co-teaching two

1

1G;(x; — xo) =J-

0

Baselines for Integrated Gradients are defined using
training-distribution statistics, such as feature-wise

networks exchange selected samples to reduce
confirmation bias. All strategies share the same
optimization settings, validation monitoring, and
early stopping criteria to ensure fair comparison.

3.10 Explainability Methods

Three explainers are used to generate feature-level
attributions for alert interpretation and to support a
comparative evaluation of explanation robustness.
SHAP is applied to compute additive attributions for
tabular models, providing local explanations for
individual  predictions and enabling global
importance summaries by aggregation over many
instances. LIME is used as a model-agnostic local
explainer,  generating  explanations  through
perturbation sampling around an instance and fitting
a weighted interpretable surrogate model. Integrated
Gradients is used for the neural detector to compute
attributions by integrating gradients along a straight-
line path from a baseline input x, to the instance x.
The attribution for feature iii is computed as

0f(xo + B(X = Xo)) d

aXi B

means, and the number of integration steps is held
constant across regimes. Explanations are generated
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on a fixed subset of test instances containing benign
and multiple attack classes, including both correctly
and incorrectly classified examples, to examine

explanation behavior under both success and failure
modes.

Table 3: Explainability methods and explanation-quality metrics.

Component Method/Metric Purpose Computation
summary
Explainer SHAP Local and global | Aggregate mean |o
feature attribution for global
importance
Explainer LIME Local surrogate | Perturbation
explanation sampling +
weighted surrogate
fit
Explainer Integrated Neural attribution Path-integrated
Gradients gradients from
baseline
Metric Faithfulness Checks  decision | Mask top-k
(deletion) drivers features;  measure
confidence drop
Metric Stability (overlap) | Repeatability across | Jaccard overlap of
runs top-k features
Metric Stability (rank) Ordering Spearman
consistency correlation of
rankings
Metric Sparsity Compactness features for 80%
attribution mass
Metric Drift Change from | 1-Jaccard(top-k) vs
baseline p=11n=0

Explainers and explanation metrics used to evaluate interpretability under stress.

3.11 Detection Metrics

Detection effectiveness is evaluated on the fixed test
set using metrics suitable for multi-class intrusion
detection and class imbalance. Macro-F1 is used as
the primary metric to give equal weight to each class,
preventing performance on dominant classes from
masking failures on rare attacks. AUROC is reported
as a threshold-independent ranking metric, and
AUPRC is included because it is more informative
when attack prevalence is low. In addition to these

effectiveness metrics, reliability of predicted
probabilities is measured using Expected Calibration
Error to quantify miscalibration and overconfidence
that may arise under label noise and limited data.

3.12 Explanation Metrics

Explanation quality is evaluated with metrics
designed to measure faithfulness and robustness
under repeated training and under stress. Faithfulness
is measured using a deletion-based protocol in which
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the top- k features identified by an explainer are
removed or masked and the resulting decrease in
predicted probability for the target class is recorded;
larger decreases indicate that the explanation
highlights features that genuinely drive the model
decision. Stability is measured by repeating training
under multiple random seeds for each (p,n)
condition and then comparing explanations across
runs using top- k feature-set overlap and rank
correlation of feature importance. Sparsity is
measured as the number of features required to
account for a fixed proportion of total attribution
magnitude, capturing explanation compactness for
analyst consumption. Drift quantifies how
explanations change relative to the clean full-data
baseline (p =1.0,n =0) by comparing top- k
feature sets and reporting divergence as 1-overlap,
thereby capturing the degree to which the model’s
explanatory narrative shifts as data become scarce or
labels become corrupted.

3.13 Experimental Procedure and
Reproducibility

For each dataset, every experimental condition is
defined by a training fraction p, a noise rate n, a
noise type, a detector family, and a learning strategy.
The training data are first downsampled to the
specified p, then labels are corrupted according to the
selected noise mechanism at rate n. The detector is
trained with validation-based early stopping. The
trained model is evaluated on the fixed test set for
detection effectiveness and calibration. Explanations
are then computed for the predefined test subset
using the applicable explainers, and explanation
metrics are computed. Each full configuration is
repeated across multiple random seeds to quantify
variance. All seeds, splits, preprocessing parameters,
and hyperparameters are logged to support
replication of the experimental results.

3.14 Statistical Analysis

Because small-data and noisy-label regimes can
introduce high variability, comparisons are based on
repeated runs and paired evaluations across seeds
where possible. Statistical significance testing is
used to assess whether differences between learning
strategies are consistently observed across repeated

runs, and effect sizes are reported to reflect practical
impact beyond p-values. This analysis supports
claims regarding trade-offs between detection
quality, calibration, and explanation robustness
under constrained and noisy supervision.

4. Results
4.1 Reporting Convention

This section reports experimental findings for multi-
class intrusion detection on UNSW-NB15 and
CICIDS2017 under small-data and noisy-label
regimes. All experiments are evaluated on a fixed
test set for each dataset to ensure comparability
across conditions. Each configuration is defined by
the training fraction p, label-noise rate 1, noise type,
model family, learning strategy, and explainer. To
account for stochasticity from stratified subsampling,
model initialization, and label corruption, each
configuration is repeated across multiple random
seeds. Metrics are reported as mean * standard
deviation across seeds. Detection effectiveness is
assessed using Macro-F1, AUROC, and AUPRC to
reflect both balanced multi-class performance and
class-imbalance  behavior, while confidence
reliability is assessed using Expected Calibration
Error. Explanation quality is assessed using
faithfulness, stability, sparsity, and drift to capture
both local correctness and robustness under
retraining. The end-to-end pipeline that governs data
preparation, downsampling, noise injection, training,
evaluation, and explanation follows the workflow in
Figure 1.

4.2 Detection Performance under Small Data

Reducing labeled training data produces consistent
degradation in intrusion detection performance
across both datasets and across model families. As
the training fraction p decreases under clean
supervision (n = 0), Macro-F1 declines, indicating
that the model’s ability to correctly separate and
recognize minority attack categories weakens when
fewer labeled examples are available. AUPRC
exhibits a similar decrease, reinforcing that
precision—recall behavior deteriorates in the small-
data regime where attack prevalence is effectively
harder to learn. In addition to the mean performance
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drop, variability across seeds increases markedly at
the smallest fractions, reflecting reduced training
stability and sensitivity to which samples remain
after  stratified downsampling. Model-family
differences are also visible under scarcity. Tree
ensembles generally remain more sample-efficient
and show slower performance deterioration than the
neural tabular model, which exhibits sharper declines
at small p. This pattern is consistent with the stronger
inductive bias of tree ensembles for tabular

engineered features and their ability to learn effective
decision boundaries from fewer labeled samples. The
combined trend across both datasets and model
families is presented in Figure 2, which shows
Macro-F1 and AUPRC as functions of p. The figure
highlights that performance degradation under
scarcity is systematic and motivates the need to
evaluate robustness approaches under the more
realistic scenario where label noise co-occurs with
small labeled data.

Figure 2: Detection under small data (n = 0): Macro-F1 and AUPRC versus training fraction p

Detection under small data (n=0): Macro-F1 vs training fraction p

Detection under small data (n=0): AUPRC vs training fraction p

AUPRC

—e- CICIDS2017 GBT
—&- CICIDS2017 RF

—— UNSW-NB15 GBT
UMSW-NB15 RF
&~ UNSW-NB15MLP  ~#= CICIDS2017 MLP

4.3 Detection Performance Under Noisy Labels

Increasing label noise reduces detection performance
in a largely monotonic manner, and the reduction is
more severe under benignification noise than under
symmetric noise. Under empirical risk minimization,
Macro-F1 and AUPRC decline sharply as nincreases,
reflecting increased confusion among attack
categories and reduced precision-recall performance
when  corrupted training  targets  weaken
discriminative structure. The effect is amplified
under benignification noise because attack-to-benign
corruption directly erodes the separability of
security-critical classes and biases the decision
boundary toward the majority benign class. Robust
learning strategies reduce the rate of degradation
relative to empirical risk minimization. Label
smoothing and noise-robust losses tend to provide

10 02 0.1 0.05
Training fraction p

clear improvements at moderate noise levels by
limiting overconfidence and reducing sensitivity to
mislabeled samples. Sample-selection approaches,
such as co-teaching or small-loss filtering, typically
provide stronger gains at higher noise levels because
they limit the influence of high-loss instances that are
more likely to be mislabeled. Figure 3 illustrates
Macro-F1 versus n under both symmetric and
benignification noise, showing that robust strategies
maintain higher performance and exhibit flatter
decline curves than standard training. The separation
between the two panels in Figure 3 further
emphasizes that benignification is the more
damaging and operationally realistic noise
mechanism, making it a more discriminative stress
test for robustness methods.

Qroe
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Figure 3: Macro-F'1 versus n under symmetric and benignification noise.

0.8 4

0.6 1

cro-F1

0.4

0.2 { —8— ERM
LabelSmooth

—— SCE/GCE

—&— Co-teaching

0.0 T T T '
0.0 01 02 0.4
Label-noise rate (n)

Macro-F1

—a— ERM
LabelSmooth

—o— SCE/GCE
—8— Co-teaching

0.8

0.6

0.4

0.2

0.0 T T T .
0.0 0.1 0.2 0.4
Label-noise rate (n)

Macro-F1 as a function of training-label noise rate n under (a) symmetric noise and (b) benignification noise.

4.4 Joint Impact of Small Data and Noisy Labels

When data scarcity and label corruption occur
together, degradation is non-linear, indicating an
interaction effect rather than a simple additive
penalty. At smaller training fractions p, the same
increase in noise rate n causes disproportionately
larger losses in Macro-F1 and AUPRC than in
higher-data regimes. This suggests that limited clean
evidence amplifies vulnerability to corrupted
supervision:  with  fewer reliable examples,
mislabeled samples can more easily shift class
boundaries, increase confusion among minority
attack categories, and encourage learning of spurious
correlates. Benignification noise is consistently the
most damaging combined setting because it
systematically relabels attacks as benign, directly
eroding separability for security-critical classes.
Consistent with Section 4.3, noise-mitigation
strategies reduce the rate of degradation across most
(p, m) settings, but extreme scarcity still limits
recoverable generalization because the training
signal is fundamentally constrained.

4.5 Calibration and Confidence Reliability

Confidence reliability deteriorates as m increases,
particularly under empirical risk minimization,
where models tend to become overconfident relative
to their true correctness. This is operationally
significant because IDS deployments often use
predicted probabilities to rank alerts, prioritize
triage, or set decision thresholds. Under label noise,
standard training increases the frequency of high-
confidence errors, raising Expected Calibration Error
(ECE). The effect is often magnified at smaller p,
where uncertainty is higher but models can still fit
sharp decision boundaries that do not reflect true
correctness. Building on Section 4.3, we find that the
same noise handling strategies also improve
calibration: label smoothing discourages extreme
probabilities, noise tolerant losses reduce sensitivity
to corrupted targets, and sample selection approaches
reduce the influence of likely mislabeled instances.
Reliability curves (Figure 4) reflect this pattern, with
these methods producing confidence accuracy
relationships closer to the ideal diagonal, especially
under high n and benignification noise.
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Figure 4: Reliability curves under clean and noisy-label conditions.
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4.6 Explanation Faithfulness

Faithfulness evaluates whether an explainer
identifies features that genuinely drive the model’s
prediction, rather than producing plausible but non
causal narratives. Across both datasets, faithfulness
declines as training conditions worsen (lower p and
higher 7), indicating weaker alignment between
attributions and the model’s true decision drivers
under scarce or corrupted supervision. In cleaner
regimes, explanations for tree-based detectors
typically yield stronger deletion effects, consistent
with more stable feature reliance on engineered
tabular IDS features. Under severe noise especially
benignification faithfulness decreases across
explainers, reflecting increased reliance on unstable
patterns induced by corrupted labels. As noted in
Section 4.3, noise tolerant training reduces
memorization of corrupted supervision;
correspondingly, it preserves higher faithfulness
under elevated n and yields explanations that better
reflect the decision logic presented to analysts.

4.7 Explanation Stability and Drift

Explanation reliability is strongly affected by both
scarcity and label corruption. Stability decreases as p
decreases and m increases, showing that feature
rankings and attribution magnitudes become less
repeatable across retraining runs under degraded
learning conditions. Drift increases under the same
stressors, indicating that explanations diverge from
those obtained under the clean, full-data baseline.
This matters for operational continuity and
governance: when explanations change substantially
between retraining cycles, analysts may receive
different investigative narratives for similar traffic
patterns, complicating auditing and playbook
development. In line with Section 4.3, noise-
mitigation strategies reduce retraining-induced
volatility, improving stability and reducing drift,
with the largest benefits typically observed under
benignification noise where boundary shifts are
otherwise strongest. Figure 5 summarizes these
trends across both benchmarks.
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Figure 5. Explanation stability (solid) and drift (dashed) versus label-noise rate n for (a) UNSW-NB15 and (b)
CICIDS2017.
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4.8 Explanation Sparsity

Sparsity captures explanation compactness and
analyst usability. Under small-data and noisy-label
regimes, explanations often become more diffuse,
requiring more features to account for a fixed
proportion of attribution magnitude. This increases
cognitive load and can indicate that attribution mass
is spread across weak or unstable correlates rather
than concentrated on a consistent signal. Following
the stability trends in Sections 4.3 and 4.7,
approaches that reduce noise sensitivity also tend to
improve compactness: when decision drivers are
more consistent, attribution mass is more
concentrated, producing explanations that are easier
to interpret during triage.
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4.9 Qualitative Case Studies

Quantitative metrics summarize overall behavior,
but qualitative examples illustrate how explanations
appear in practice. Under clean training, SHAP,
LIME, and Integrated Gradients often highlight more
consistent high-impact features, and explanations for
comparable instances are easier to reconcile across
runs. Under severe stress, empirical risk
minimization produces larger shifts in feature
identity and ranking, consistent with the observed
decrease in stability and increase in drift. In line with
Section 4.7, noise-mitigation strategies reduce this
volatility and preserve more consistent analyst-
facing narratives across retraining cycles. Figure 6
presents representative local explanations for benign
and malicious instances from both datasets,
illustrating the practical interpretability differences
between standard and noise-mitigated training under
scarcity and corruption.
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Figure 6: Local explanation examples (UNSW-NB15 and CICIDS2017).

Figure 5a. UNSW-NB15 malicious instance (top features)
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Figure 5c. CICIDS2017 malicious instance (top features)
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Conclusion

This paper compared explainable multi-class
intrusion detection under controlled small-data and
noisy-label regimes using UNSW-NB15 and
CICIDS2017. Across both datasets, detection
effectiveness and explanation quality degrade
nonlinearly when data scarcity and label noise co-
occur, with security-realistic benignification noise
producing the most severe losses. In addition to
reducing Macro-F1 and AUPRC, these conditions
worsen  probability reliability and increase
explanation drift, undermining analyst trust and
auditability. The results indicate that training choices
affect not only accuracy but also calibration and the
stability of explanations delivered to analysts. In
operational IDS deployments where labels may be
delayed or derived from weak heuristics noise-
mitigation strategies can improve the reliability of
confidence scores and preserve more consistent
explanatory narratives, supporting triage and
governance. First, conclusions are based on two
benchmarks and a fixed set of model families;
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Figure 5b, UNSW-NB15 benign instance (top features)
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additional traffic sources and modern deep tabular
architectures may yield different trade-offs. Second,
the injected noise mechanisms approximate
operational errors but cannot capture all real labeling
failure modes. Third, explanation metrics quantify
stability and faithfulness under controlled settings
but do not fully measure human interpretability or
investigative usefulness in live SOC workflows.
Future studies should evaluate additional datasets
and streaming scenarios, incorporate concept drift
and continual learning, and include human-in-the-
loop assessments to link explanation metrics to
analyst decision quality and response time.
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